R语言函数化学习笔记

1.apply函数

可以让list或者vector的元素依次执行一遍调用的函数,输出的结果是list格式

2.sapply函数

原理和list一样,但是输出的结果是一个向量的形式

3.vapply

这个函数输出的结果更加详细,但是函数使用的时候需要多写一个几个参数来控制

Use vapply

Before you get your hands dirty with the third and last apply function that you'll learn about in this intermediate R course, let's take a look at its syntax. The function is called vapply(), and it has the following syntax:

vapply(X, FUN, FUN.VALUE, ..., USE.NAMES = TRUE)

Over the elements inside X, the function FUN is applied. The FUN.VALUE argument expects a template for the return argument of this function FUN. USE.NAMES is TRUE by default; in this case vapply() tries to generate a named array, if possible.

 temp is already prepared for you in the workspace

 Definition of below_zero()
below_zero <- function(x) {
return(x[x < 0])
} # Apply below_zero over temp using sapply(): freezing_s freezing_s<-sapply(temp,below_zero)
# Apply below_zero over temp using lapply(): freezing_l
freezing_l<-lapply(temp,below_zero) # Are freezing_s and freezing_l identical?
dentical(freezing_s,freezing_l)

举个例子就知道结果的区别了

temp is already prepared for you in the workspace

Definition of below_zero()

below_zero <- function(x) {

return(x[x < 0])

}

Apply below_zero over temp using sapply(): freezing_s

freezing_s<-sapply(temp,below_zero)

Apply below_zero over temp using lapply(): freezing_l

freezing_l<-lapply(temp,below_zero)

Are freezing_s and freezing_l identical?

identical(freezing_s,freezing_l)

可以看一下改写

# temp is already defined in the workspace

# Convert to vapply() expression
sapply(temp, max)
vapply(temp,max,numeric(1))
# Convert to vapply() expression
sapply(temp, function(x, y) { mean(x) > y }, y = 5)
vapply(temp,function(x, y){ mean(x) > y },logical(1), y = 5)

除了以上的函数之外,还有

tapply

mapply

。。。

以下是常用的一些简单函数

seq():

Generate sequences, by specifying the from, to, and by arguments.

rep():

Replicate elements of vectors and lists.

sort():

Sort a vector in ascending order. Works on numerics, but also on character strings and logicals.

rev():

Reverse the elements in a data structures for which reversal is defined.

str():

Display the structure of any R object.

append():

Merge vectors or lists.

is.*():

Check for the class of an R object.

as.*():

Convert an R object from one class to another.

unlist():

Flatten (possibly embedded) lists to produce a vector.

 # Fix me
> rep(seq(1, 7, by = 2), times = 7)
[1] 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7 1 3 5 7
> rep(seq(1, 7, by = 2), each = 7)
[1] 1 1 1 1 1 1 1 3 3 3 3 3 3 3 5 5 5 5 5 5 5 7 7 7 7 7 7 7
> a<-rep(2008:2018, times = 11)
> a
[1] 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2008 2009 2010 2011
[16] 2012 2013 2014 2015 2016 2017 2018 2008 2009 2010 2011 2012 2013 2014 2015
[31] 2016 2017 2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2008
[46] 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2008 2009 2010 2011 2012
[61] 2013 2014 2015 2016 2017 2018 2008 2009 2010 2011 2012 2013 2014 2015 2016
[76] 2017 2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2008 2009
[91] 2010 2011 2012 2013 2014 2015 2016 2017 2018 2008 2009 2010 2011 2012 2013
[106] 2014 2015 2016 2017 2018 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
[121] 2018
>
> # Create first sequence: seq1
> seq1<-seq(1,500,by=3)
>
> # Create second sequence: seq2
> seq2<-seq(1200,900,by=-7)
>
> # Calculate total sum of the sequences
> sum(seq1,seq2)
[1] 87029

grepl & grep

这两个函数其实挺常用的就是match

In their most basic form, regular expressions can be used to see whether a pattern exists inside a character string or a vector of character strings. For this purpose, you can use:

grepl(), which returns TRUE when a pattern is found in the corresponding character string.

grep(), which returns a vector of indices of the character strings that contains the pattern.

Both functions need a pattern and an x argument, where pattern is the regular expression you want to match for, and the x argument is the character vector from which matches should be sought.

grep(pattern, x, ignore.case = FALSE, perl = FALSE, value = FALSE,
fixed = FALSE, useBytes = FALSE, invert = FALSE)
grepl(pattern, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE) sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE) gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE) regexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE) gregexpr(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE) regexec(pattern, text, ignore.case = FALSE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

demo

> # The emails vector has already been defined for you
> emails <- c("john.doe@ivyleague.edu", "education@world.gov", "dalai.lama@peace.org",
"invalid.edu", "quant@bigdatacollege.edu", "cookie.monster@sesame.tv")
>
> # Use grepl() to match for "edu"
>
> grepl(pattern="edu",emails)
[1] TRUE TRUE FALSE TRUE TRUE FALSE
> # Use grep() to match for "edu", save result to hits
> hits<-grep(pattern="edu",emails)
>
> # Subset emails using hits
> emails[hits]
[1] "john.doe@ivyleague.edu" "education@world.gov"
[3] "invalid.edu" "quant@bigdatacollege.edu"

You can use the caret, ^, and the dollar sign, $ to match the content located in the start and end of a string, respectively. This could take us one step closer to a correct pattern for matching only the ".edu" email addresses from our list of emails. But there's more that can be added to make the pattern more robust:

@, because a valid email must contain an at-sign.

., which matches any character (.) zero or more times (). Both the dot and the asterisk are metacharacters. You can use them to match any character between the at-sign and the ".edu" portion of an email address.

\.edu$, to match the ".edu" part of the email at the end of the string. The \ part escapes the dot: it tells R that you want to use the . as an actual character.

对于一些特殊的符号,需要使用\来进行转码,否者会被识别错误

 > # The emails vector has already been defined for you
> emails <- c("john.doe@ivyleague.edu", "education@world.gov", "dalai.lama@peace.org",
"invalid.edu", "quant@bigdatacollege.edu", "cookie.monster@sesame.tv")
>
> # Use grepl() to match for .edu addresses more robustly
> grepl(pattern="@.*\\.edu$",emails)
[1] TRUE FALSE FALSE FALSE TRUE FALSE
>
> # Use grep() to match for .edu addresses more robustly, save result to hits
> hits<-grep(pattern="@.*\\.edu$",emails)
>
>
> # Subset emails using hits
> emails[hits]
[1] "john.doe@ivyleague.edu" "quant@bigdatacollege.edu"

sub & gsub

While grep() and grepl() were used to simply check whether a regular expression could be matched with a character vector, sub() and gsub() take it one step further: you can specify a replacement argument. If inside the character vector x, the regular expression pattern is found, the matching element(s) will be replaced with replacement.sub() only replaces the first match, whereas gsub() replaces all matches.

Suppose that emails vector you've been working with is an excerpt of DataCamp's email database. Why not offer the owners of the .edu email addresses a new email address on the datacamp.edu domain? This could be quite a powerful marketing stunt: Online education is taking over traditional learning institutions! Convert your email and be a part of the new generation!

这两个函数就是替换的意思

替换指定的字符

> # The emails vector has already been defined for you
> emails <- c("john.doe@ivyleague.edu", "education@world.gov", "global@peace.org",
"invalid.edu", "quant@bigdatacollege.edu", "cookie.monster@sesame.tv")
>
> # Use sub() to convert the email domains to datacamp.edu
> sub("@.*\\.edu$","@datacamp.edu",emails)
[1] "john.doe@datacamp.edu" "education@world.gov"
[3] "global@peace.org" "invalid.edu"
[5] "quant@datacamp.edu" "cookie.monster@sesame.tv"

日期

> # Get the current date: today
> today <- Sys.Date()
>
> # See what today looks like under the hood
> unclass(today)
[1] 18238
>
> # Get the current time: now
> now <- Sys.time()
>
> # See what now looks like under the hood
> unclass(now)
[1] 1575802501

常用的格式

Create and format dates

To create a Date object from a simple character string in R, you can use the as.Date() function. The character string has to obey a format that can be defined using a set of symbols (the examples correspond to 13 January, 1982):

%Y: 4-digit year (1982)

%y: 2-digit year (82)

%m: 2-digit month (01)

%d: 2-digit day of the month (13)

%A: weekday (Wednesday)

%a: abbreviated weekday (Wed)

%B: month (January)

%b: abbreviated month (Jan)

demo

> # Definition of character strings representing dates
> str1 <- "May 23, '96"
> str2 <- "2012-03-15"
> str3 <- "30/January/2006"
>
> # Convert the strings to dates: date1, date2, date3
> date1 <- as.Date(str1, format = "%b %d, '%y")
> date2 <- as.Date(str2)
> date3 <- as.Date(str3, format = "%d/%B/%Y")
>
> # Convert dates to formatted strings
> format(date1, "%A")
[1] "Thursday"
> format(date2, "%d")
[1] "15"
> format(date3, "%b %Y")
[1] "Jan 2006"

R语言函数化学习笔记6的更多相关文章

  1. R语言函数化学习笔记3

    R语言函数化学习笔记3 R语言常用的一些命令函数 1.getwd()查看当前R的工作目录 2.setwd()修改当前工作目录 3.str()可以输出指定对象的结构(类型,位置等),同理还有class( ...

  2. R语言函数化学习笔记4

    条件语句和循环语句 当你说话时候用到了如果,此时条件出现了 举个条件函数的例子 sign_t<-function(x){ if(x>0){ return(1) }else if(x< ...

  3. R语言函数化编程笔记2

    R语言函数化编程笔记2 我学过很多的编程语言,可以我写的代码很啰嗦,一定是我太懒了.或许是基础不牢地动山摇 1.为什么要学函数 函数可以简化编程语言,减少重复代码或者说面向对象的作用 2.函数 2.1 ...

  4. R语言函数化编程笔记1

    R语言函数化编程笔记1 notes:有一个不错的网站叫做stack overflow,有问题可以从上面找或者搜索答案,会有大佬相助. 在github上面可以找到很多R的扩展包,如果自己额修改被接受,那 ...

  5. R语言函数话学习笔记5

    使用Tidyverse完成函数化编程 (参考了家翔学长的笔记) 1.magrittr包的使用 里面有很多的管道函数,,可以减少代码开发时间,提高代码可读性和维护性 1.1 四种pipeline 1.1 ...

  6. R语言与机器学习学习笔记

    人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...

  7. R语言与显著性检验学习笔记

    R语言与显著性检验学习笔记 一.何为显著性检验 显著性检验的思想十分的简单,就是认为小概率事件不可能发生.虽然概率论中我们一直强调小概率事件必然发生,但显著性检验还是相信了小概率事件在我做的这一次检验 ...

  8. 【数据分析 R语言实战】学习笔记 第十一章 对应分析

    11.2对应分析 在很多情况下,我们所关心的不仅仅是行或列变量本身,而是行变量和列变量的相互关系,这就是因子分析等方法无法解释的了.1970年法国统计学家J.P.Benzenci提出对应分析,也称关联 ...

  9. 【数据分析 R语言实战】学习笔记 第四章 数据的图形描述

    4.1 R绘图概述 以下两个函数,可以分别展示二维,三维图形的示例: >demo(graphics) >demo(persp) R提供了多种绘图相关的命令,可分成三类: 高级绘图命令:在图 ...

随机推荐

  1. sublime笔记

    插件安装和使用 首先,要安装package control,按照官方方法安装: https://packagecontrol.io/installation 重启Sublime Text 3. 如果在 ...

  2. C语言switch中case后跟随break语句

    1.case后面的常量表达式实际上只起语句标号作用,而不起条件判断作用,即“只是开始执行处的入口标号”.因此,一旦与switch后面圆括号中表达式的值匹配,就从此标号处开始执行:而且执行完一个case ...

  3. codewars--js--Two Joggers--求最小公倍数、最大公约数

    问题描述: Two Joggers Description Bob and Charles are meeting for their weekly jogging tour. They both s ...

  4. Linux文件结构-底层文件访问&文件目录和维护

    每个运行中的程序被称为进程(process),它有一些与之关联的文件描述符(一些小值整数).可以通过文件描述符访问打开的文件或设备. 一个程序运行时,一般会有三个文件描述符与之对应 0:标准输入 1: ...

  5. Ream--(objc)写事务精简方案

    Ream--(objc)写事务精简方案 地址: REALM-- Realm官方提供的的写事务有两种方式: A[realm beginWriteTransaction]; // ... [realm c ...

  6. [VB.NET Tips]创建匿名类型列表

    在调用一些Web API时经常要发送或接收一些数据,在构造Json时可能要创建一些类. 很多都是在调用相关方法才使用到这些类,那使用匿名类型是个不错的选择.如果要传些表结构数据时,就要创建List. ...

  7. 【POJ - 2533】Longest Ordered Subsequence (最长上升子序列 简单dp)

    Longest Ordered Subsequence 搬中文 Descriptions: 给出一个序列,求出这个序列的最长上升子序列. 序列A的上升子序列B定义如下: B为A的子序列 B为严格递增序 ...

  8. go微服务框架kratos学习笔记九(kratos 全链路追踪 zipkin)

    目录 go微服务框架kratos学习笔记九(kratos 全链路追踪 zipkin) zipkin使用demo 数据持久化 go微服务框架kratos学习笔记九(kratos 全链路追踪 zipkin ...

  9. 如何修改Tomcat运行时jvm编码

    问题: 最近在部署项目的时候出现数据乱码的情况,经过一番查看项目都是用的UTF-8编码格式,数据也是,但是经过调用接口传给对方就乱码了. 由于是部署在Windows环境下,Windows默认编码GBK ...

  10. linux 开机自启动redis服务

    [Unit] Description=The redis-server Process Manager Documentation=https://redis.io/ After=network.ta ...