lucas定理

(nm) mod p=(⌊np⌋⌊mp⌋)(n mod pm mod p) mod p=(n/pm/p)(n%pm%p) mod p\tbinom{n}{m} \bmod p = \tbinom{\lfloor \frac{n}{p} \rfloor}{\lfloor \frac{m}{p} \rfloor} \tbinom{n \bmod p}{m \bmod p} \bmod p=\tbinom{n/p}{m/p}\tbinom{n\%p}{m\%p} \bmod p(mn​)modp=(⌊pm​⌋⌊pn​⌋​)(mmodpnmodp​)modp=(m/pn/p​)(m%pn%p​)modp

先预先求出i!  (i∈[0,p))i! \;(i \in \left[0,p\right))i!(i∈[0,p)).

并利用费马小定理和快速幂乘求出每一个i!i!i!的逆元(i!)−1(i!)^{-1}(i!)−1。求(nm) mod p\tbinom{n}{m} \bmod p(mn​)modp,当m=0m=0m=0直接就是111.若n,mn,mn,m都在ppp范围内,则直接转化为n!×(m!)−1×[(n−m)!]−1n! \times (m!)^{-1} \times [(n-m)!]^{-1}n!×(m!)−1×[(n−m)!]−1.否则就是lucas定理缩小规模。

[对一个固定的p,预处理求阶乘及快速模幂求其逆元,时间复杂度O(plog⁡2p)O(p\log_2{p})O(plog2​p)。空间复杂度O(p)O(p)O(p)。预处理之后,单次求(nm) mod p\tbinom{n}{m} \bmod p(mn​)modp复杂度O(log⁡pm)O(\log_{p}{m})O(logp​m)]{}

洛谷P3807模板题

void prepare(ll p, vector<ll>&fac, vector<ll>&inv_fac) {
fac.resize(p); inv_fac.resize(p);
mod_sys mod;
mod.set_mod(p);
fac[0] = 1;
inv_fac[0] = 1;
for (int i = 1; i < p; ++i) {
fac[i] = (fac[i-1]*i)%p;
inv_fac[i] = mod.pow(fac[i], p-2); // 既然能枚举一遍,p*p不应该爆ll
}
} // 输入预设0=<n,m<p
inline ll combination(ll n, ll m, ll p, vector<ll>&fac, vector<ll>&inv_fac) {
if (n < m) return 0;
return fac[n]*inv_fac[m]%p*inv_fac[n-m]%p;
} ll lucas(ll n, ll m, ll p, vector<ll>&fac, vector<ll>&inv_fac) {
if (n < m) return 0;
ll ans = 1;
while(true) {
if (m == 0) return ans;
if (n < p && m < p) return ans*combination(n,m,p,fac,inv_fac)%p;
ans = ans * combination(n%p,m%p,p,fac,inv_fac)%p;
n/=p; m/=p;
}
}

lucas定理 模板的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数

    typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...

  3. Lucas定理模板【bzoj2982】【combination】

    (上不了p站我要死了,侵权度娘背锅) Description LMZ有n个不同的基友,他每天晚上要选m个进行[河蟹],而且要求每天晚上的选择都不一样.那么LMZ能够持续多少个这样的夜晚呢?当然,LMZ ...

  4. 【组合数+Lucas定理模板】HDU 3037 Saving

    acm.hdu.edu.cn/showproblem.php?pid=3037 [题意] m个松果,n棵树 求把最多m个松果分配到最多n棵树的方案数 方案数有可能很大,模素数p 1 <= n, ...

  5. BZOJ 4403 2982 Lucas定理模板

    思路: Lucas定理的模板题.. 4403 //By SiriusRen #include <cstdio> using namespace std; ; #define int lon ...

  6. Lucas定理模板

    用于大组合数对p取模的计算. #include <cstdio> #include <iostream> #include <cmath> #include < ...

  7. HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description Although winter is far away, squirrels have to work day and night to save beans. ...

  8. xdoj-1057(Lucas定理的证明及其模板)

    Lucas定理的证明: 转自百度百科(感觉写的还不错) 首先你需要这个算式:    ,其中f > 0&& f < p,然后 (1 + x) nΞ(1 + x) sp+q Ξ ...

  9. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

随机推荐

  1. jdk8 ConcurrentHashMap分析

    ConcurrentHashMap分析 tryPresize() transfer() putVal() addCount() sumCount() class ConcurrentHashMap { ...

  2. 10个很多人不知道的Redis使用技巧

    前言 Redis 在当前的技术社区里是非常热门的.从来自 Antirez 一个小小的个人项目到成为内存数据存储行业的标准,Redis已经走过了很长的一段路.随之而来的一系列最佳实践,使得大多数人可以正 ...

  3. QIIME2使用方法

    激活qiime2的执行环境:source activate qiime2-2019.4如何查看conda已有的环境:conda info -e 以下分析流程参考:https://docs.qiime2 ...

  4. HanLP《自然语言处理入门》笔记--6.条件随机场与序列标注

    笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 6. 条件随机场与序列标注 本章介绍一种新的序列标注模型条件随机场.这种模型与感知 ...

  5. c和c++中读取数据的方式总结

    目录 c 输出 printf() 输入 scanf getchar(), putchar() gets(), puts() c++ 输入 cin() getline() get() 输出 cout 最 ...

  6. Selenium实现微博自动化运营:关注、点赞、评论

    目录 Selenium 是什么? 一.核心代码 二.步骤分解 1.打开浏览器 2.访问微博登录页 3.输入账号密码 4.点击登录 5.通过人机验证 6.打开我们的中公题库君首页 7.加一下关注 8.定 ...

  7. eclipse 连接sql sever

    https://www.cnblogs.com/newen/p/4428541.html 和eclipse连接mysql相似,只是 String url="jdbc:sqlserver:// ...

  8. mongodb副本集群搭建

    一.环境介绍 1.机器信息 10.40.6.68 10.40.6.108 10.40.6.110 软件环境为centos 6.x 2.mongodb 下载链接地址 https://www.mongod ...

  9. Go语言实现:【剑指offer】二叉搜索树的第k个的结点

    该题目来源于牛客网<剑指offer>专题. 给定一棵二叉搜索树,请找出其中的第k小的结点.例如,(5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. Go语言实现: ...

  10. python 中列表 元组 字典 集合的区别

    先看图片解释 (1)列表 什么是列表呢?我觉得列表就是我们日常生活中经常见到的清单.比如,统计过去一周我们买过的东西,把这些东西列出来,就是清单.由于我们买一种东西可能不止一次,所以清单中是允许有重复 ...