复习一下莫比乌斯反演

首先很显然用一下容斥把它转化成求 \(ans=\sum_{i=1}^a \sum_{j=1}^b [{gcd(i,j)=d}]\)

我们可以定义 f(d) 和 F(d) 如下:

\(f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=d]\)

\(F(d)=\sum_{i=1}^N\sum_{j=1}^M[d|gcd(i,j)]\)

发现

\(\sum_{n|d}f(d)=F(n)=\lfloor\frac Nn\rfloor\lfloor\frac Mn\rfloor\)

莫比乌斯反演,得到:

\(f(n)=\sum_{n|d}\mu(\lfloor\frac dn\rfloor)F(d)\)

于是

\(ans=f(d)=\sum_{d|p}\mu(\lfloor\frac pd\rfloor)F(p)\)

换个元

\(ans=\sum_{p'}\mu(p')F( p' d ) =\sum_{p'=1}^{min(\lfloor\frac Nd\rfloor,\lfloor\frac Md\rfloor)}\mu(p')\lfloor\frac N{p'd}\rfloor \lfloor \frac M{p'd}\rfloor\)

把 \(p'\) 写作 \(p\) ,得到

\(ans=\sum_{p}\mu(p)F( p d ) =\sum_{p=1}^{min(\lfloor\frac Nd\rfloor,\lfloor\frac Md\rfloor)}\mu(p)\lfloor\frac N{pd}\rfloor \lfloor \frac M{pd}\rfloor\)

#include <bits/stdc++.h>
using namespace std; #define int long long
const int N = 1000005;
const int MAXN = 1000005; bool isNotPrime[MAXN + 1];
int mu[MAXN + 1], phi[MAXN + 1], primes[MAXN + 1], cnt;
inline void euler() {
isNotPrime[0] = isNotPrime[1] = true;
mu[1] = 1;
phi[1] = 1;
for (int i = 2; i <= MAXN; i++) {
if (!isNotPrime[i]) {
primes[++cnt] = i;
mu[i] = -1;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt; j++) {
int t = i * primes[j];
if (t > MAXN) break;
isNotPrime[t] = true;
if (i % primes[j] == 0) {
mu[t] = 0;
phi[t] = phi[i] * primes[j];
break;
} else {
mu[t] = -mu[i];
phi[t] = phi[i] * (primes[j] - 1);
}
}
}
for(int i=1;i<=MAXN;i++) mu[i]+=mu[i-1];
} int solve(int n,int m,int k) {
n/=k; m/=k;
if(n==0 || m==0) return 0;
int ans=0,l=1,r=0;
if(n>m) swap(n,m);
while(l<=n) {
r=min(n/(n/l),m/(m/l));
ans+=(mu[r]-mu[l-1])*(n/l)*(m/l);
l=r+1;
}
return ans;
} signed main() {
euler();
int t,a,b,c,d,k;
ios::sync_with_stdio(false);
cin>>t;
while(t--) {
cin>>a>>b>>c>>d>>k; --a; --c;
cout<<solve(b,d,k)-solve(a,d,k)-solve(b,c,k)+solve(a,c,k)<<endl;
}
}

[HAOI2011] Problem b - 莫比乌斯反演的更多相关文章

  1. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  2. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  3. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  4. BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 1007  Solved: 415[Submit][ ...

  5. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

  6. BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)

    [Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...

  7. [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演

    1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...

  8. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  9. BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演

    分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...

  10. 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)

    题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...

随机推荐

  1. jQuery 源码解析(三十一) 动画模块 便捷动画详解

    jquery在$.animate()这个接口上又封装了几个API,用于进行匹配元素的便捷动画,如下: $(selector).show(speed,easing,callback)        ;如 ...

  2. Python和Anoconda和Pycharm联合使用教程

    简介 Python是一种跨平台的计算机程序设计语言.是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的.大型项目的开发. ...

  3. 【python人脸识别】使用opencv识别图片中的人脸

    概述: OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库 为什么有OpenCV? 计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种: 1.研究 ...

  4. Hystrix压测

    背景介绍 JSF(京东服务框架,类似dubbo)默认配置了可伸缩的最大到200的工作线程池,每一个向外提供的服务都在其中运行(这里我们是服务端),这些服务内部调用外部依赖时(这里我们是客户端)一般是同 ...

  5. Redis-异步消息

    关于异步消息,大家都知道,如下: 这些用起来都是比较复杂的,RabbitMQ先要创建Exchange,在创建Queue,还要将Queue和Exchange通过某种规则绑定起来.发消息之前要指定rout ...

  6. 从HTML到node.js以及跨域问题的解决

    废话不多说,直接上代码 网页客户端 <!DOCTYPE html> <html> <head> <meta http-equiv="Content- ...

  7. Java数列循环右移

    描述 有n个整数组成一个数组(数列).现使数列中各数顺序依次向右移动k个位置,移出的数再从开头移入.输出移动后的数列元素,元素之间逗号隔开. 题目没有告诉你n的范围,要求不要提前定义数组的大小. 另外 ...

  8. 使用mongoose--写接口

    定义数据模型 import mongoose from 'mongoose' mongoose.connect('mongodb://localhost/edu') const advertSchem ...

  9. tensorflow张量限幅

    本篇内容有clip_by_value.clip_by_norm.gradient clipping 1.tf.clip_by_value a = tf.range(10) print(a) # if ...

  10. Android电源管理基础知识整理

    前言 待机.睡眠与休眠的区别? Android开发者官网当中提到"idle states",该如何理解,这个状态会对设备及我们的程序造成何种影响? 进入Doze模式中的idle状态 ...