[HAOI2011] Problem b - 莫比乌斯反演
复习一下莫比乌斯反演
首先很显然用一下容斥把它转化成求 \(ans=\sum_{i=1}^a \sum_{j=1}^b [{gcd(i,j)=d}]\)
我们可以定义 f(d) 和 F(d) 如下:
\(f(d)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=d]\)
\(F(d)=\sum_{i=1}^N\sum_{j=1}^M[d|gcd(i,j)]\)
发现
\(\sum_{n|d}f(d)=F(n)=\lfloor\frac Nn\rfloor\lfloor\frac Mn\rfloor\)
莫比乌斯反演,得到:
\(f(n)=\sum_{n|d}\mu(\lfloor\frac dn\rfloor)F(d)\)
于是
\(ans=f(d)=\sum_{d|p}\mu(\lfloor\frac pd\rfloor)F(p)\)
换个元
\(ans=\sum_{p'}\mu(p')F( p' d ) =\sum_{p'=1}^{min(\lfloor\frac Nd\rfloor,\lfloor\frac Md\rfloor)}\mu(p')\lfloor\frac N{p'd}\rfloor \lfloor \frac M{p'd}\rfloor\)
把 \(p'\) 写作 \(p\) ,得到
\(ans=\sum_{p}\mu(p)F( p d ) =\sum_{p=1}^{min(\lfloor\frac Nd\rfloor,\lfloor\frac Md\rfloor)}\mu(p)\lfloor\frac N{pd}\rfloor \lfloor \frac M{pd}\rfloor\)
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1000005;
const int MAXN = 1000005;
bool isNotPrime[MAXN + 1];
int mu[MAXN + 1], phi[MAXN + 1], primes[MAXN + 1], cnt;
inline void euler() {
isNotPrime[0] = isNotPrime[1] = true;
mu[1] = 1;
phi[1] = 1;
for (int i = 2; i <= MAXN; i++) {
if (!isNotPrime[i]) {
primes[++cnt] = i;
mu[i] = -1;
phi[i] = i - 1;
}
for (int j = 1; j <= cnt; j++) {
int t = i * primes[j];
if (t > MAXN) break;
isNotPrime[t] = true;
if (i % primes[j] == 0) {
mu[t] = 0;
phi[t] = phi[i] * primes[j];
break;
} else {
mu[t] = -mu[i];
phi[t] = phi[i] * (primes[j] - 1);
}
}
}
for(int i=1;i<=MAXN;i++) mu[i]+=mu[i-1];
}
int solve(int n,int m,int k) {
n/=k; m/=k;
if(n==0 || m==0) return 0;
int ans=0,l=1,r=0;
if(n>m) swap(n,m);
while(l<=n) {
r=min(n/(n/l),m/(m/l));
ans+=(mu[r]-mu[l-1])*(n/l)*(m/l);
l=r+1;
}
return ans;
}
signed main() {
euler();
int t,a,b,c,d,k;
ios::sync_with_stdio(false);
cin>>t;
while(t--) {
cin>>a>>b>>c>>d>>k; --a; --c;
cout<<solve(b,d,k)-solve(a,d,k)-solve(b,c,k)+solve(a,c,k)<<endl;
}
}
[HAOI2011] Problem b - 莫比乌斯反演的更多相关文章
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- P2522 [HAOI2011]Problem b (莫比乌斯反演)
题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演
分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- [POI2007]ZAP-Queries && [HAOI2011]Problem b 莫比乌斯反演
1,[POI2007]ZAP-Queries ---题面---题解: 首先列出式子:$$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}[gcd(i, j) == d]$$ ...
- [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演
对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...
- BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演
分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...
- 洛谷P2522 [HAOI2011]Problem b(莫比乌斯反演)
题目描述 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 输入输出格式 输入格式: 第一行一个整数 ...
随机推荐
- MySQL必知必会--分 组 数 据
数据分组 目前为止的所有计算都是在表的所有数据或匹配特定的 WHERE 子句的 数据上进行的.提示一下,下面的例子返回供应商 1003 提供的产品数目 但如果要返回每个供应商提供的产品数目怎么办?或者 ...
- Linux 文件|目录 属性
文件属性 ls -l 列出的文件|目录信息如下 第一个字符指定类型,-是文件,d是目录(dir). 后面9个字符是该文件|目录的用户权限:r读,w写,x执行. 执行是指:如果该文件是一个可执行文件, ...
- 【题解】 2月19日 厦门双十中学NOIP2014模拟D2 T1 采药人的切题规则
Made by 退役的OIer 第一次写博客,写得不好 or 不清楚的可以 在下方留言,我会尽量改进的! 好啦~~~回到正题,题面见传送门 [问题描述] 采药人最近在认真切题,但回旋的转盘时常在眼前浮 ...
- idea如何做到多模块开发项目 收藏整理
idea如何做到多模块开发项目 <packaging>pom</packaging>是什么意思? idea 快捷键汇总
- 【STM32H7教程】第47章 STM32H7的FMC总线基础知识和HAL库API
完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第47章 STM32H7的FMC总线基础知识和HA ...
- Gird(2)
目录 grid 布局(2) grid区域属性 网格线名称 grid-template-areas 属性 grid-auto-flow 容器内子元素的属性 grid 布局(2) grid区域属性 网格线 ...
- Fhq Treap [FhqTreap 学习笔记]
众所周知 Fhq Treap 是 fhq 神仙研究出来的平衡树- 具体实现 每个点实现一个 \(\text{rnd}\) 表示 rand 的值 为什么要 rand 呢 是为了保证树高为 \(\log ...
- Wannafly Winter Camp 2020 Day 6C 酒馆战棋 - 贪心
你方有 \(n\) 个人,攻击力和血量都是 \(1\).对方有 \(a\) 个普通人, \(b\) 个只有盾的,\(c\) 个只有嘲讽的,\(d\) 个有盾又有嘲讽的,他们的攻击力和血量都是无穷大.有 ...
- final关键字在JVM中的理解
我们先来看两段代码与运行结果,根据结果去分析解释一下 不加final关键字: package com.waibizi; public class demo02 { public static void ...
- 数字孪生 VS 平行系统
数字孪生和平行系统作为新兴技术,在解决当今人工智能邻域面临的信息量大,干扰信息不确定因素多,与人的参与沟通更加紧密,人机互动更加重视,为了使人们有更好的体验人工智能带来的便利,急需推动信息物理社会的高 ...