LUOGU P1313 计算系数 (组合数学)
解题思路
比较简单的题,用二项式定理即可。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath> using namespace std;
const int MAXN = ;
const int mod = ;
typedef long long LL; inline int rd(){
int x=,f=;char ch=getchar();
while(!isdigit(ch)) {f=ch=='-'?:;ch=getchar();}
while(isdigit(ch)) {x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
} int a,b,k,n,m;
LL C[MAXN][MAXN]; int fast_pow(int x,int y){
int ret=;
for(;y;y>>=){
if(y&) ret=(LL)ret*x%mod;
x=(LL)x*x%mod;
}
return ret;
} int main(){
a=rd(),b=rd(),k=rd(),n=rd(),m=rd();
for(int i=;i<=k+;i++){
C[i][]=;
for(int j=;j<=i;j++) C[i][j]=C[i-][j]+C[i-][j-],C[i][j]%=mod;
}
printf("%lld",(LL)fast_pow(a,n)*fast_pow(b,m)%mod*C[k+][n]%mod);
return ;
}
LUOGU P1313 计算系数 (组合数学)的更多相关文章
- [NOIp2011] luogu P1313 计算系数
继续水博客,待会回去上术学. 题目描述 给定一个多项式 (by+ax)k(by+ax)^k(by+ax)k ,请求出多项式展开后 xn×ymx^n \times y^mxn×ym 项的系数. Solu ...
- luogu P1313 计算系数
二项式定理 组合数取膜 费马小定理 #include<iostream> using namespace std; #define mod 10007 #define int long l ...
- 洛谷P1313 计算系数【快速幂+dp】
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
- 洛谷 P1313 计算系数 解题报告
P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...
- 洛谷P1313 计算系数
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
- 洛谷 P1313 计算系数 —— 水题
题目:https://www.luogu.org/problemnew/show/P1313 不就是...C(k,n) * an * bm . 代码如下: #include<iostream&g ...
- luoguP1313 [NOIp2011]计算系数 [组合数学]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- 洛谷 P1313 计算系数 Label:杨辉三角形 多项式计算
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- 【数论】洛谷P1313计算系数
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
随机推荐
- PAT_A1094#The Largest Generation
Source: PAT A1094 The Largest Generation (25 分) Description: A family hierarchy is usually presented ...
- Spring Boot + kkFileView-2.1.2 实现文档在线预览
1. 下载kkFileview:https://gitee.com/kekingcn/file-online-preview/releases 2. 启动服务 进入 bin 目录,双击 startup ...
- 2018ICPC焦作 D-Keiichi Tsuchiya the Drift King /// 几何
题目大意: https://nanti.jisuanke.com/t/34142 有一个弯道抽象成圆的一部分 车子抽象成矩形 漂移过程中矩形上边会与圆的圆心在同一条直线上 以右上点贴着弯道边缘进行漂移 ...
- 哈理工赛 H-小乐乐学数学 /// 筛法得素数表+树状数组
题目大意: 给定n个数 m个询问 询问l r区间内的孤独数的个数 孤独数的定义为在该区间内与其他所有数互质的数 看注释 #include <bits/stdc++.h> using nam ...
- 【csp】2018-3
第一题 跳一跳 题目: 题意:浅显.qwq 题解:2计数+1,到1就清空计数. 代码: #include<iostream> #include<cstdio> #include ...
- Photoshop基础照片美化
自从有了“ps”以后,很多事情变成了可能,你可以出现在任何你想在的地方.而最基本的美化照片的功能,我想是很多同学学习PS的初衷.当你掌握了这门技术,很多人会对你刮目相看!今天小编就和大家分享一下ps的 ...
- java oop第07章_集合框架
一. 什么是集合: 在Java中提供了一些可以保存同一数据类型的数据集称为集合,就是规定了一些集合的规范(接口.抽象类.实现类)及方法, 方便我们程序在保存数据时进行增.删.改.查操作,编程更加高效. ...
- GetOpenFilename的基本用法(文件夹实操)
Sub 数据导入()Dim f, arr, i&, j&, k, m%, n%, p%, sh As Workbookf = Application.GetOpenFilename(f ...
- not registered via @EnableConfigurationProperties or marked as Spring component
利用@ConfigurationProperties(prefix = "")来绑定属性时报错: not registered via @EnableConfigurationPr ...
- List、Map、Set 三个接口,存取元素时,各有什么特点
List与Set都是单列元素的集合,它们有一个功共同的父接口Collection. Set里面不允许有重复的元素, 存元素:add方法有一个boolean的返回值,当集合中没有某个元素,此时add方法 ...