PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification;
Traditional TSC: find global similarities or local patterns/subsequence(shapelet).
We extract statistical features from VG to facilitate TSC
Introduction:
Global similarity:
the difference between TSC and other classification: deal with sequentiality property.
traditional methods: K-NN algorithm + DTW, one intrinsic issue with DTW, is that it focuses on finding global similarities. 在我看来这句话,简直是boo shit,一个距离测量只关注与全局的相似度?它应该是全部的距离都包含。
Local features:
Bag-of-patterns; SAX-VSM; shapelets-based algorithms.
Suffering:
- high computation complexity
- suboptimal classification accuracy
Time series --------> VG --------> graph features
graph features: Motif distribution, density;
Q:
- why it's called multiscale VG
- the statistical graph features: probability distributions of small motifs, assortativity and degree statistics.
much faster than Learning Shapelets and Fast Shapelet.
Future work:
1. Other useful and efficient graph features: degree distribution entropy, centrality, bipartivity, etc.
2. adopt MVG for multivariate TSC.
PP: Extracting statisticla graph features for accurate and efficient time series classification的更多相关文章
- Spark Extracting,transforming,selecting features
Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/m ...
- 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》
论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ...
- PP: Triple-shapelet networks for time series classification
Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ...
- PP: Shallow RNNs: a method for accurate time-series classification on tiny devices
Problem: time series classification shallow RNNs: the first layer splits the input sequence and runs ...
- PP: Shape and time distortion loss for training deep time series forecasting models
Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...
- Distinctive Image Features from Scale-Invariant
http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf Abstract This paper ...
- Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍
Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...
随机推荐
- RabbitMQ下载与安装
RabbitMQ下载与安装 先跟大家科普一下MQ和RabbitMQ MQ简介 MQ全称为Message Queue ,即消息队列 应用场景: 1.任务异步处理. 将不需要同步处理的并且耗时长的操作由消 ...
- jquery deferred 转载
阮一峰的网络日志 » 首页 » 档案 JavaScript http://www.ruanyifeng.com/blog/2011/08/a_detailed_explanation_of_jquer ...
- EIP
EIP中的值就是CPU下次要执行的地址 jmp 直接修改eip的值 1.jmp imm=mov eip,imm 2.jmp r 3.jmp m call 直接修改eip的值,并把当前指令的下一行地址存 ...
- NR / 5G - The Proportional Fair algorithm
- CNN中的feature map
个人学习CNN的一些笔记,比较基础,整合了其他博客的内容 feature map的理解在cnn的每个卷积层,数据都是以三维形式存在的.你可以把它看成许多个二维图片叠在一起(像豆腐皮竖直的贴成豆腐块一样 ...
- 《Head first设计模式》之外观模式
外观模式提供了一个统一的接口,用来访问子系统中的一群接口.外观定义了一个高层接口,让子系统更容易使用. 我们已经知道适配器模式是如何将一个类的接口转换成另一个符合客户期望的接口的.现在我们要看一个改变 ...
- k8s系列--- dashboard认证及分级授权
http://blog.itpub.net/28916011/viewspace-2215214/ 因版本不一样,略有改动 Dashboard官方地址: https://github.com/kube ...
- yum 升级php版本
centos默认安装的php都是 5.3的 ,现在需要 5.6以上的版本 手动安装比较麻烦,直接用yum升级了. 一.准备工作 首先检查当前php版本 #php -v 查看安装的php扩展包 #yu ...
- 你应该了解的 Java SPI 机制
前言 不知大家现在有没有去公司复工,我已经在家办公将近 3 周了,同时也在家呆了一个多月:还好工作并没有受到任何影响,我个人一直觉得远程工作和 IT 行业是非常契合的,这段时间的工作效率甚至比在办公室 ...
- [Linux]curl 获取本服务器公网IP
curl ifconfig.me curl icanhazip.com curl curlmyip.com curl ip.appspot.com curl ipinfo.io/ip curl ipe ...