Problem: TSC, time series classification;

Traditional TSC: find global similarities or local patterns/subsequence(shapelet).

We extract statistical features from VG to facilitate TSC

Introduction:

Global similarity:

the difference between TSC and other classification: deal with sequentiality property.

traditional methods: K-NN algorithm + DTW, one intrinsic issue with DTW, is that it focuses on finding global similarities. 在我看来这句话,简直是boo shit,一个距离测量只关注与全局的相似度?它应该是全部的距离都包含。

Local features:

Bag-of-patterns; SAX-VSM; shapelets-based algorithms.

Suffering:

  1. high computation complexity
  2. suboptimal classification accuracy

Time series --------> VG --------> graph features

graph features: Motif distribution, density;

Q:

  1. why it's called multiscale  VG
  2. the statistical graph features: probability distributions of small motifs, assortativity and degree statistics.

much faster than Learning Shapelets and Fast Shapelet.

Future work:

1. Other useful and efficient graph features: degree distribution entropy, centrality, bipartivity, etc.

2. adopt MVG for multivariate TSC.

PP: Extracting statisticla graph features for accurate and efficient time series classification的更多相关文章

  1. Spark Extracting,transforming,selecting features

    Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/m ...

  2. 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》

    论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ...

  3. PP: Triple-shapelet networks for time series classification

    Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ...

  4. PP: Shallow RNNs: a method for accurate time-series classification on tiny devices

    Problem: time series classification shallow RNNs: the first layer splits the input sequence and runs ...

  5. PP: Shape and time distortion loss for training deep time series forecasting models

    Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...

  6. Distinctive Image Features from Scale-Invariant

    http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf Abstract This paper ...

  7. Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍

    Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...

  8. Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph

    Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...

  9. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

随机推荐

  1. [terminal]终端仿真程序

    char * szCommAry[COMM_NUM]={ //屏幕属性命令,23 "\x1b[12h",//禁止本端回显,键盘数据仅送给主机 "\x1b[12l" ...

  2. shell脚本自动化部署

    由于公司技术部团队较小,没有专门的运维团队,所以运维工作技术部承包了. 一.纯人工部署是这样的: 1. 本地打包:一般 maven clean package 2. 借助xftp上传到服务器对应目录 ...

  3. .NET Core之单元测试(二):使用内存数据库处理单元测试中的数据库依赖

    目录 定义一个待测试API 测试用例 为减少篇幅,隐藏了SampleEntity和SqliteDbContext 定义一个待测试API 如下,我们定义了一个名为Sample的API,其中有一个外部依赖 ...

  4. CentOS安装-(CentOS7)最小化安装

    镜像:CentOS-7-x86_64-DVD-1908.iso 1.将安装光盘插入服务器,开机会读取系统安装程序,选择 Install CentOS 7 2.安装过程是图形界面,可以选择熟悉的语言执行 ...

  5. File、FileStream、StreamWriter、StringWriter文件使用总结

    一.File 1.File为静态类 File类,是一个静态类,支持对文件的基本操作,包括创建,拷贝,移动,删除和打开一个文件.File类方法的参量很多时候都是路径path.主要提供有关文件的各种操作, ...

  6. Redis(十):pub/sub 发布订阅源码解析

    谈到发布订阅模式,相信不会陌生,典型的观察者模式的实现.然而从表面来看,本地实现一个wait/notify通知.register/update调用, 实现一个远程mq服务, 还有本文说的 pub/su ...

  7. jmeter接口测试(登录、注册)

    Jmeter 进行接口测试流程: Jmeter 的下载地址:http://jmeter.apache.org/download_jmeter.cgi 下面举例说明使用流程,有两种参数传递的方式,我们以 ...

  8. 文件图片上传目录 禁止执行php

    apache配置上传目录禁止运行php的方法 导读: 禁止上传目录运行php等可执行文件可以从一定程度上增加网站的安全性, 禁止上传目录运行php的方法可以用.htaccess文件, 也可以直接在ap ...

  9. Mysql 升级重装后连接出错 Table \'performance_schema.session_variables\' doesn\'t exist

    升级重装后  连接出错 报这个错误 Table 'performance_schema.session_variables' doesn't exist   使用这个命令即可 [root@localh ...

  10. apache主配置文件httpd.conf详解

    [root@lamp conf]# vi httpd.conf.bak 1 # 2 # This is the main Apache HTTP server configuration file. ...