PP: Extracting statisticla graph features for accurate and efficient time series classification
Problem: TSC, time series classification;
Traditional TSC: find global similarities or local patterns/subsequence(shapelet).
We extract statistical features from VG to facilitate TSC
Introduction:
Global similarity:
the difference between TSC and other classification: deal with sequentiality property.
traditional methods: K-NN algorithm + DTW, one intrinsic issue with DTW, is that it focuses on finding global similarities. 在我看来这句话,简直是boo shit,一个距离测量只关注与全局的相似度?它应该是全部的距离都包含。
Local features:
Bag-of-patterns; SAX-VSM; shapelets-based algorithms.
Suffering:
- high computation complexity
- suboptimal classification accuracy
Time series --------> VG --------> graph features
graph features: Motif distribution, density;
Q:
- why it's called multiscale VG
- the statistical graph features: probability distributions of small motifs, assortativity and degree statistics.
much faster than Learning Shapelets and Fast Shapelet.
Future work:
1. Other useful and efficient graph features: degree distribution entropy, centrality, bipartivity, etc.
2. adopt MVG for multivariate TSC.
PP: Extracting statisticla graph features for accurate and efficient time series classification的更多相关文章
- Spark Extracting,transforming,selecting features
		Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/m ... 
- 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》
		论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ... 
- PP: Triple-shapelet networks for time series classification
		Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ... 
- PP: Shallow RNNs: a method for accurate time-series classification on tiny devices
		Problem: time series classification shallow RNNs: the first layer splits the input sequence and runs ... 
- PP: Shape and time distortion loss for training deep time series forecasting models
		Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ... 
- Distinctive Image Features from Scale-Invariant
		http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf Abstract This paper ... 
- Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍
		Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ... 
- Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph
		Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ... 
- 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015
		Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ... 
随机推荐
- OpenCV3入门(五)图像的阈值
			1.图像阈值与二值化 阈值是一种简单的图像分割方法,一幅图像包括目标物体(前景).背景还有噪声,要想从数字图像中直接提取出目标物体,可以设定一个像素值即阈值,然后用图像的每一个像素点和阈值做比较,给出 ... 
- Flink安装及实例教程
			通过本教程我们将快速部署好flink在linux下的环境,并通过flink完成一个小demo的测试 一.准备阶段 flink压缩包下载(1.7.2): http://archive.apache.or ... 
- Jenkins: QQ/Wechat机器人群消息通知Job构建结果
			简介 Jenkins是持续化集成的一个核心部件,它上游从仓库(gitlab)等拉取代码,经编译构建,将应用发布至下游目标环境:构建结果通知的方式有很多,现成的插件有邮件和钉钉方式,但是就方便的角度,通 ... 
- 题解【[HNOI2010]弹飞绵羊】
			\[ \texttt{Description} \] 有 \(n\) 个弹力装置排成一排,第 \(i\) 个弹力装置的弹力系数是 \(k_i\) ,绵羊到第 \(i\) 个装置时,会被弹到第 \(i+ ... 
- num12---组合模式
			案例描述: 学校下有多个学院,每个学院下有多个专业系. 把学校.院系.专业 全都看成某个组织类型,含有添加add方法,删除remove方法,显示print方法. 如果有新增的院系.专业,新增加对应的 ... 
- Jmeter之下载文件
			前言 我们可以利用postman工具来测试下载文件的接口,那么假如要利用Jmeter工具来进行下载接口的测试,又该如何测试呢? 下载文件的接口地址:/pinter/file/api/download? ... 
- Linux中Hadoop的安装与配置
			一.准备 1,配通网络 ping www.baidu.com 之前安装虚拟机时配过 2,关闭防火墙 systemctl stop firewalld systemctl disable firewal ... 
- docker容器互联,实现目录、服务共享
			一.需求 docker使服务之间实现容器隔离,比如Javaweb项目前端.后端.数据库.数据库后台,分别把它们部署在不同的容器里面,实现隔离.但服务和服务之间也有互访的需求,这就涉及到容器网络和容器互 ... 
- 字符串(Java.lang.String类)的使用
			java字符串就是Unicode字符序列,例如"Java"就是四个Unicode字符 java没有内置的字符串类型,而是在标准Java类库中提供了一个预定义的类String.每个用 ... 
- PHPExcel使用
			参考链接: 官方github:https://github.com/PHPOffice/PHPExcel 设置表格字体颜色等操作:http://www.cnblogs.com/grimm/p/9 ... 
