Problem: TSC, time series classification;

Traditional TSC: find global similarities or local patterns/subsequence(shapelet).

We extract statistical features from VG to facilitate TSC

Introduction:

Global similarity:

the difference between TSC and other classification: deal with sequentiality property.

traditional methods: K-NN algorithm + DTW, one intrinsic issue with DTW, is that it focuses on finding global similarities. 在我看来这句话,简直是boo shit,一个距离测量只关注与全局的相似度?它应该是全部的距离都包含。

Local features:

Bag-of-patterns; SAX-VSM; shapelets-based algorithms.

Suffering:

  1. high computation complexity
  2. suboptimal classification accuracy

Time series --------> VG --------> graph features

graph features: Motif distribution, density;

Q:

  1. why it's called multiscale  VG
  2. the statistical graph features: probability distributions of small motifs, assortativity and degree statistics.

much faster than Learning Shapelets and Fast Shapelet.

Future work:

1. Other useful and efficient graph features: degree distribution entropy, centrality, bipartivity, etc.

2. adopt MVG for multivariate TSC.

PP: Extracting statisticla graph features for accurate and efficient time series classification的更多相关文章

  1. Spark Extracting,transforming,selecting features

    Spark(3) - Extracting, transforming, selecting features 官方文档链接:https://spark.apache.org/docs/2.2.0/m ...

  2. 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》

    论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ...

  3. PP: Triple-shapelet networks for time series classification

    Problem: time series classification shapelet-based method: two issues 1. for multi-class imbalanced ...

  4. PP: Shallow RNNs: a method for accurate time-series classification on tiny devices

    Problem: time series classification shallow RNNs: the first layer splits the input sequence and runs ...

  5. PP: Shape and time distortion loss for training deep time series forecasting models

    Problem: time series forecasting Challenge: forecasting for non-stationary signals and multiple futu ...

  6. Distinctive Image Features from Scale-Invariant

    http://nichol.as/papers/Lowe/Distinctive Image Features from Scale-Invariant.pdf Abstract This paper ...

  7. Distinctive Image Features from Scale-Invariant Keypoints(个人翻译+笔记)-介绍

    Distinctive Image Features from Scale-Invariant Keypoints,这篇论文是图像识别领域SIFT算法最为经典的一篇论文,导师给布置的第一篇任务就是它. ...

  8. Paper: A novel method for forecasting time series based on fuzzy logic and visibility graph

    Problem Forecasting time series. Other methods' drawback: even though existing methods (exponential ...

  9. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

随机推荐

  1. OpenCV3入门(五)图像的阈值

    1.图像阈值与二值化 阈值是一种简单的图像分割方法,一幅图像包括目标物体(前景).背景还有噪声,要想从数字图像中直接提取出目标物体,可以设定一个像素值即阈值,然后用图像的每一个像素点和阈值做比较,给出 ...

  2. Flink安装及实例教程

    通过本教程我们将快速部署好flink在linux下的环境,并通过flink完成一个小demo的测试 一.准备阶段 flink压缩包下载(1.7.2): http://archive.apache.or ...

  3. Jenkins: QQ/Wechat机器人群消息通知Job构建结果

    简介 Jenkins是持续化集成的一个核心部件,它上游从仓库(gitlab)等拉取代码,经编译构建,将应用发布至下游目标环境:构建结果通知的方式有很多,现成的插件有邮件和钉钉方式,但是就方便的角度,通 ...

  4. 题解【[HNOI2010]弹飞绵羊】

    \[ \texttt{Description} \] 有 \(n\) 个弹力装置排成一排,第 \(i\) 个弹力装置的弹力系数是 \(k_i\) ,绵羊到第 \(i\) 个装置时,会被弹到第 \(i+ ...

  5. num12---组合模式

    案例描述: 学校下有多个学院,每个学院下有多个专业系. 把学校.院系.专业  全都看成某个组织类型,含有添加add方法,删除remove方法,显示print方法. 如果有新增的院系.专业,新增加对应的 ...

  6. Jmeter之下载文件

    前言 我们可以利用postman工具来测试下载文件的接口,那么假如要利用Jmeter工具来进行下载接口的测试,又该如何测试呢? 下载文件的接口地址:/pinter/file/api/download? ...

  7. Linux中Hadoop的安装与配置

    一.准备 1,配通网络 ping www.baidu.com 之前安装虚拟机时配过 2,关闭防火墙 systemctl stop firewalld systemctl disable firewal ...

  8. docker容器互联,实现目录、服务共享

    一.需求 docker使服务之间实现容器隔离,比如Javaweb项目前端.后端.数据库.数据库后台,分别把它们部署在不同的容器里面,实现隔离.但服务和服务之间也有互访的需求,这就涉及到容器网络和容器互 ...

  9. 字符串(Java.lang.String类)的使用

    java字符串就是Unicode字符序列,例如"Java"就是四个Unicode字符 java没有内置的字符串类型,而是在标准Java类库中提供了一个预定义的类String.每个用 ...

  10. PHPExcel使用

       参考链接: 官方github:https://github.com/PHPOffice/PHPExcel 设置表格字体颜色等操作:http://www.cnblogs.com/grimm/p/9 ...