题解【Codeforces438D】The Child and Sequence
题目描述
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.
Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array \(a[1],a[2],...,a[n]\). Then he should perform a sequence of \(m\) operations. An operation can be one of the following:
Print operation \(l,r\). Picks should write down the value of \(\sum_{i=1}^{r} a[i]\).
Modulo operation \(l,r,x\). Picks should perform assignment \(a[i]=a[i]\) \(\%\) \(x\) for each \(i\) \((l<=i<=r)\).
Set operation \(k,x\). Picks should set the value of \(a[k]\) to \(x\) (in other words perform an assignment \(a[k]=x\)).
Can you help Picks to perform the whole sequence of operations?
输入输出格式
输入格式
The first line of input contains two integer: \(n,m\) \((1<=n,m<=10^{5})\). The second line contains \(n\) integers, separated by space: \(a[1],a[2],...,a[n] (1<=a[i]<=10^{9})\) — initial value of array elements.
Each of the next m m m lines begins with a number type type type .
If \(type=1\), there will be two integers more in the line: \(l,r (1<=l<=r<=n)\) , which correspond the operation \(1\).
If \(type=2\), there will be three integers more in the line: \(l,r,x (1<=l<=r<=n; 1<=x<=10^{9})\) , which correspond the operation \(2\).
If \(type=3\), there will be two integers more in the line: \(k,x (1<=k<=n; 1<=x<=10^{9})\) , which correspond the operation \(3\).
输出格式
For each operation \(1\), please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.
输入输出样例
输入样例#1
5 5
1 2 3 4 5
2 3 5 4
3 3 5
1 2 5
2 1 3 3
1 1 3
输出样例#1
8
5
输入样例#2
10 10
6 9 6 7 6 1 10 10 9 5
1 3 9
2 7 10 9
2 5 10 8
1 4 7
3 3 7
2 7 9 9
1 2 4
1 6 6
1 5 9
3 1 10
输出样例#2
49
15
23
1
9
说明
Consider the first testcase:
At first, \(a={1,2,3,4,5}\).
After operation \(1\), \(a={1,2,3,0,1}\).
After operation \(2\), \(a={1,2,5,0,1}\).
At operation \(3\), \(2+5+0+1=8\).
After operation \(4\), \(a={1,2,2,0,1}\).
At operation \(5\), \(1+2+2=5\).
题意翻译
给定数列,区间查询和,区间取模,单点修改。
\(n,m\)小于\(10^5\)
题解
线段树基础题。
区间查询和、单点修改很简单,也很基础,这里就不在赘述。
重点来看一下区间取模。
首先,我们不难知道,当一个数\(a \% b\)时,如果\(a < b\),那么这个取模是没有什么意义的(\(*\))。
如果,我们执行区间取模时,一个一个数去取模,那么复杂度会非常高,达到\(\Theta (n \times m)\),绝对会\(TLE\)。
因此考虑一种类似搜索“剪枝”的方式来优化区间取模。
这时,我们就要用到上面的(\(*\))了。
用一个数组\(mx[]\)来记录区间内的最大值,如果这个最大值都小于我们要取模的那个数了,就直接\(return\)返回掉,因为对这个区间取模就已经没有意义了。
很容易就可以写出\(AC\)代码。
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#define int long long
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar();}
return f * x;
}
int n/*数的个数*/, m/*操作个数*/, tr[100003 << 2]/*区间和*/, mx[100003 << 2]/*区间最大值*/, a[100003]/*每个数的值*/;
inline void pushup(int p)//上传节点操作
{
mx[p] = max(mx[p << 1], mx[(p << 1) | 1]);//更新区间最大值
tr[p] = tr[p << 1] + tr[(p << 1) | 1];//加上区间和
}
void build(int s, int t, int p)//建树操作
{
if (s == t)//已经是叶子节点了
{
mx[p] = tr[p] = a[s];//更新节点的参数
return;//返回
}
int mid = (s + t) >> 1;//计算中间值
build(s, mid, p << 1); //递归左子树
build(mid + 1, t, (p << 1) | 1);//递归右子树
pushup(p);//上传当前节点
}
void modify(int l/*要修改的数的编号,即目标节点*/, int r/*要更新的值*/, int s, int t, int p)//单点修改操作
{
if (s == t)//已经到了目标节点
{
mx[p] = tr[p] = r; //更新节点参数
return;//直接返回
}
int mid = (s + t) >> 1;//计算中间值
if (l <= mid) //目标节点在左区间
modify(l, r, s, mid, p << 1);//递归左子树寻找
else //目标节点在右区间
modify(l, r, mid + 1, t, (p << 1) | 1);//递归右区间查找
pushup(p);//上传当前节点
}
void getmod(int l/*区间左界*/, int r/*区间右界*/, int mod/*要取模的值*/, int s, int t, int p)//区间取模操作
{
if (mx[p] < mod) return;//"剪枝"操作
if (s == t)//已经到了叶子节点
{
tr[p] = tr[p] % mod; //取模
mx[p] = tr[p];//更新最大值
return;//返回
}
int mid = (s + t) >> 1;//计算中间值
if (l <= mid) getmod(l, r, mod, s, mid, p << 1);//查找中点左边的区间进行取模
if (r > mid) getmod(l, r, mod, mid + 1, t, (p << 1) | 1);//查找中点右边的区间进行取模
pushup(p);//上传当前节点
}
int getans(int l, int r, int s, int t, int p)//查询区间和操作
{
if (l <= s && t <= r) return tr[p];//当前区间完全包含于目标区间,就直接返回当前区间的和
int mid = (s + t) >> 1, ans = 0;//计算中间值及初始化答案
if (l <= mid) ans = ans + getans(l, r, s, mid, p << 1);//加上中点左边的区间进行求和
if (r > mid) ans = ans + getans(l, r, mid + 1, t, (p << 1) | 1);//加上中点右边的区间进行求和
return ans;//返回答案
}
signed main()
{
n = gi(), m = gi();
for (int i = 1; i <= n; i++) a[i] = gi();
//以上为输入
build(1, n, 1);//建树
while (m--)
{
int fl = gi(), x = gi(), y = gi();
if (fl == 1)//是输出区间和操作
{
printf("%lld\n", getans(x, y, 1, n, 1));//就输出区间和
}
else if (fl == 2)//区间取模操作
{
int md = gi();//输入模数
getmod(x, y, md, 1, n, 1);//进行取模
}
else
{
modify(x, y, 1, n, 1);//否则就进行单点修改,注意是把点x的值修改为y
}
}
return 0;//结束
}
题解【Codeforces438D】The Child and Sequence的更多相关文章
- 题解——CodeForces 438D The Child and Sequence
题面 D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸
D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模
D. The Child and Sequence At the children's day, the child came to Picks's house, and messed his h ...
- Codeforce 438D-The Child and Sequence 分类: Brush Mode 2014-10-06 20:20 102人阅读 评论(0) 收藏
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence(线段树)
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- AC日记——The Child and Sequence codeforces 250D
D - The Child and Sequence 思路: 因为有区间取模操作所以没法用标记下传: 我们发现,当一个数小于要取模的值时就可以放弃: 凭借这个来减少更新线段树的次数: 来,上代码: # ...
- 438D - The Child and Sequence
D. The Child and Sequence time limit per test 4 seconds memory limit per test 256 megabytes input st ...
- Codeforces 438D The Child and Sequence - 线段树
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...
随机推荐
- linux100讲——03 什么是linux
1.linux 有两种含义: 一种是linus 编写的开源操作系统的内核 另一种是广义的操作系统 2.linux的第一印象 服务端操作系统和客户端操作系统要做的事情不一样 命令行操作方式与图形界面的差 ...
- Hackme.inndy -> Onepunch
Onepunch 这个题的想法必须得称妙了,需要对以往简单的认知进行一定的颠覆.特殊性在于程序的代码段(0x401000)具有写权限 1.通过修改程序代码段控制程序流程 程序中只能对任意一个字节改写一 ...
- c#快速热身
一.选择结构: 1. if选择结构 2. if-else选择结构 3. if-else if-else if-else多重if选择结构 4. if-if-else-else 嵌套if选择结构 5. s ...
- 如何处理pom文件中没有找到HUB检查到高危漏洞的依赖包
最近使用HUB工具检查到maven工程中存在高危险漏洞,虽然定位到具体的引用包了,但是在pom文件中却没有发现该依赖包.此时,我们就需要用到这条命令mvn dependency:tree,该命令会将m ...
- 一直报找不到function,然后又不为null。最后发现是个数组。哭死。
今天写代码,报找不到function.然后又不为空.最后发现是类型不对.因为是数组,所以不能用node.function(),而应该用nodeArr[0].function.错用前者会找不到funct ...
- UTF自动化测试工具
自UFT推出后,QTP慢慢退出历史舞台 UFT测试的基本流程:录制测试脚本—-编辑测试脚本—-调试测试脚本—-运行测试脚本—-分析测试结果 UFT(QTP)介绍 http://blog.csdn. ...
- Java期末考试冲刺总结
经过长达将近三个小时的冲刺,我感觉身心俱疲,但它无法掩盖我敲代码的欲望! 三个小时我只实现了公文流转系统的的部分功能. 我深刻的意识到建民老师说的这套关系之复杂,它真的是太复杂了!!!没有系统的梳理, ...
- C#继承是个啥
继承: 字面意思就是继承 如地主老王有500亩地,老王的儿子小王可以种这五百亩地可以随便拿这五百亩地上面的任何东西 如Controller 你要用从一个controller调用另一个controlle ...
- javax.naming.NameNotFoundException: Name jdbc is not bound in this Context
这个错误的原因是没有项目使用到了Tomcat中配置的数据源(但是你本地没有配置),关于什么是JNDI看这篇文章就够了® 今天导入一个项目(比较老的),在本地运行时报错: Cannot resolve ...
- 2020牛客寒假算法基础集训营5 B.牛牛战队的比赛地 (二分/三分)
https://ac.nowcoder.com/acm/contest/3006/B 三分做法 #include<bits/stdc++.h> #define inf 0x3f3f3f3f ...