C\C++ 位域操作
几篇较全面的位域相关的文章:
http://www.uplook.cn/blog/9/93362/
本文主要对位域相关知识进行了一下梳理,参考如下:
C/C++中以一定区域内的位(bit)为单位来表示的数据成为位域,位域必须指明具体的数目。
位域的作用主要是节省内存资源,使数据结构更紧凑。
1. 一个位域必须存储在同一个字节中,不能跨两个字节,故位域的长度不能大于一个字节的长度。
如一个字节所剩空间不够存放另一位域时,应从下一单元起存放该位域。也可以有意使某位域从下一单元开始。例如:

struct BitField
{
unsigned int a:4; //占用4个二进制位;
unsigned int :0; //空位域,自动置0;
unsigned int b:4; //占用4个二进制位,从下一个存储单元开始存放;
unsigned int c:4; //占用4个二进制位;
unsigned int d:5; //占用5个二进制位,剩余的4个bit不够存储4个bit的数据,从下一个存储单元开始存放;
unsigned int :0; //空位域,自动置0;
unsigned int e:4; //占用4个二进制位,从这个存储单元开始存放;
};

2. 取地址操作符&不能应用在位域字段上;
3. 位域字段不能是类的静态成员;
4. 位域字段在内存中的位置是按照从低位向高位的顺序放置的;

struct BitField
{
unsigned char a:2; //最低位;
unsigned char b:3;
unsigned char c:3; //最高位;
};
union Union
{
struct BitField bf;
unsigned int n;
};
union Union ubf;
ubf.n = 0; //初始化;
ubf.bf.a = 0; //二进制为: 000
ubf.bf.b = 0; //二进制为: 000
ubf.bf.c = 1; //二进制为: 001
printf("ubf.bf.n = %u\n", ubf.n);

位域中的位域字段按照从低位向高位顺序方式的顺序来看,那么,a、b、c这三个位域字段在内存中的放置情况是:
最高位是c:001,中间位是b:000,最低位是a:000;所以,这个位域结构中的8二进制内容就是: 00100000,总共8个位,其十进制格式就是32;
实际上打印出来的ubf.n值就是32;
ubf.n = 100; //二进制为: 01100100
printf("ubf.bf.a = %d, ubf.bf.b = %d, ubf.bf.c = %d\n", ubf.bf.a, ubf.bf.b, ubf.bf.c);
此时,对于位域ubf.bf来说,其位于字段仍然按照从低位向高位顺序方式的顺序放置,则,最高位是c:011,中间位是b:001,最低位是a:00;
所以,ubf.bf.a = 0; ubf.bf.b = 1; ubf.bf.c = 3;
实际上打印出来的结果也的确如此;不够存储下一个位域的4位,故设为空位域,不使用,自动置0;e从第四个字节处开始存放,占用4位;
5. 位域的对齐
1. 如果相邻位域字段的类型相同,且其位宽之和小于类型的sizeof大小,则后面的字段将紧邻前一个字段存储,直到不能容纳为止;
2. 如果相邻位域字段的类型相同,但其位宽之和大于类型的sizeof大小,则后面的字段将从新的存储单元开始,其偏移量为其类型大小的整数倍;
3.如果相邻的两个位域字段的类型不同,则各个编译器的具体实现有差异,VC6采取不压缩方式,GCC和Dev-C++都采用压缩方式;
4. 整个结构体的总大小为最宽基本类型成员大小的整数倍。
5. 如果位域字段之间穿插着非位域字段,则不进行压缩;(不针对所有的编译器)

struct BFA
{
unsigned char a:2;
unsigned char b:3;
unsigned char c:3;
};
struct BFB
{
unsigned char a:2;
unsigned char b:3;
unsigned char c:3;
unsigned int d:4; //多出来这个位域字段;
};

sizeof(BFA)=1, sizeof(BFB)=8;
这也说明了第三点中"相邻两个位于字段类型不相同时,VC6采取不压缩的方式"
6. 当要把某个成员说明成位域时,其类型只能是int,unsigned int与signed int三者之一(说明:int类型通常代表特定机器中整数的自然长度。short类型通常为16位,long类型通常为32位,int类型可以为16位或32位.各编译器可以根据硬件特性自主选择合适的类型长度.见The C Programming Language中文 P32)。
尽管使用位域可以节省内存空间,但却增加了处理时间,在为当访问各个位域成员时需要把位域从它所在的字中分解出来或反过来把一值压缩存到位域所在的字位中.

#include <iostream>
#include <memory.h>
using namespace std;
struct A
{
int a:5;
int b:3;
};
int main(void)
{
char str[100] = "0134324324afsadfsdlfjlsdjfl";
struct A d;
memcpy(&d, str, sizeof(A));
cout << d.a << endl;
cout << d.b << endl;
return 0;
}

在32位x86机器上输出:
高位 00110100 00110011 00110001 00110000 低位
'4' '3' '1' '0'
其中d.a和d.b占用d低位一个字节(00110000),d.a : 10000, d.b : 001
解析:在默认情况下,为了方便对结构体内元素的访问和管理,当结构体内的元素长度都小于处理器的位数的时候,便以结构体里面最长的元素为对其单位,即结构体的长度一定是最长的数据元素的整数倍;如果有结构体内存长度大于处理器位数的元素,那么就以处理器的位数为对齐单元。由于是32位处理器,而且结构体中a和b元素类型均为int(也是4个字节),所以结构体的A占用内存为4个字节。
上例程序中定义了位域结构A,两个个位域为a(占用5位),b(占用3位),所以a和b总共占用了结构A一个字节(低位的一个字节)。
当程序运行到14行时,d内存分配情况:
高位 00110100 00110011 00110001 00110000 低位
'4' '3' '1' '0'
其中d.a和d.b占用d低位一个字节(00110000),d.a : 10000, d.b : 001
d.a内存中二进制表示为10000,由于d.a为有符号的整型变量,输出时要对符号位进行扩展,所以结果为-16(二进制为11111111111111111111111111110000)
d.b内存中二进制表示为001,由于d.b为有符号的整型变量,输出时要对符号位进行扩展,所以结果为1(二进制为00000000000000000000000000000001)
另一个例子,来自http://blog.chinaunix.net/uid-28697486-id-3511598.htm

#include "stdio.h" void main(int argn ,char *argv)
{
struct test {
unsigned a:10;
unsigned b:10;
unsigned c:6;
unsigned :2;//this two bytes can't use
unsigned d:4;
}data,*pData;
data.a=0x177;
data.b=0x111;
data.c=0x7;
data.d=0x8; pData=&data;
printf("data.a=%x data.b= %x data.c=%x data.d=%xn",pData->a,pData->b,pData->c,pData->d);//位域可以使用指针 printf("sizeof(data)=%dn",sizeof(data)); //4 bytes ,最常用的情况 struct testLen{
char a:5;
char b:5;
char c:5;
char d:5;
char e:5;
}len; printf("sizeof(len)=%dn",sizeof(len)); //5bytes 规则2 struct testLen1{
char a:5;
char b:2;
char d:3;
char c:2;
char e:7;
}len1;
printf("sizeof(len1) =%dn",sizeof(len1)); //3bytes 规则1 struct testLen2{
char a:2;
char :3;
char b:7;
long d:20; //4bytes
char e:4;
}len2;
printf("sizeof(len2)=%dn",sizeof(len2)); //12 规则3,4,5,总长为4的整数倍,2+3 占1byte,b占1bye 由于与long对其,2+3+7 占4字节,后面 d 与 e进行了优化 占一个4字节 struct testLen3{
char a:2;
char :3;
char b:7;
long d:30;
char e:4;
}len3;
printf("sizeof(len3)=%dn",sizeof(len3));//12 规则3,4,5,总长为4的整数倍,2+3 占1byte,b占1bye 由于与long对其,2+3+7 占4字节,后面 d占一个4字节,为了保证与long对其e独占一个4字节
}

另:C++标准库提供了一个bitset 类模板,它可以辅助操纵位的集合。在可能的情况下应尽可能使用它来取代位域。
C\C++ 位域操作的更多相关文章
- 用union 和 struct 位域操作
很久没有用C 语言中的 union 和 struct 位域操作了. 最近用了一下(当然,我承认是从stackoverflow 上抄的) 需求是这样的,已知一个 LPARAM 整数 3866625 ,求 ...
- C位域操作
位域的概念 1个字节包含8位,有些变量保存的数据不需要占用这么长的空间(比如bool类型,只有两个状态true和false, 1位就可以搞定,剩下的7位就浪费了),这就催生了“位域”结构,位域将1个字 ...
- 【C/C++开发】关于位域操作
几篇较全面的位域相关的文章: http://www.uplook.cn/blog/9/93362/ C/C++位域(Bit-fields)之我见 C中的位域与大小端问题 内存对齐全攻略–涉及位域的内存 ...
- 全面总结sizeof的用法(定义、语法、指针变量、数组、结构体、类、联合体、位域位段)
一.前言 编译环境是vs2010(32位). <span style="font-size:18px;">#include<iostream> #inclu ...
- C语言中结构体的位域(bit-fields)
转自:http://blog.sina.com.cn/s/blog_6240b5980100tcba.html 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一 ...
- C结构体之位域(位段)
C结构体之位域(位段) 有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C ...
- C语言基础--结构体对齐,位域,联合体
结构体对齐 1--结构体对齐的原因与意义 许多计算机系统对基本数据类型的可允许地址做出了一些限制,要求某种类型的对象的地址必须是某个值K(通常是2,4,8)的倍数,而这个k则被称为该数据类型的对齐模数 ...
- [转]C结构体之位域(位段)
有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C语言又提供了一种数据结构 ...
- 【转】C语言中结构体的位域(bit-fields)
有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位.例如在存放一个开关量时,只有0和1 两种状态, 用一位二进位即可.为了节省存储空间,并使处理简便,C语言又提供了一种数据结构 ...
随机推荐
- 给锚点a标签添加滑动效果
a标签是前端必用之一,但是a标签点击后马上跳到了href属性值处,有时候要达到滑动效果就要自己添加JavaScript 普通的a标签代码写好之后,在js脚本内加上 $("a").c ...
- Java之解决线程安全问题的方式三:Lock锁
import java.util.concurrent.locks.ReentrantLock; /** * 解决线程安全问题的方式三:Lock锁 --- JDK5.0新增 * * 1. 面试题:sy ...
- Java--Json解析
普通Json {"code":"S0000", "describe":"数据正常返回", "result&qu ...
- Linux-进程状态和system函数
1.进程的5种状态 (1).就绪态. 这个进程当前所有运行条件就绪,只要得到CPU时间就能直接运行. (2).运行态 就绪态时得到了CPU就进入运行态开始运行. (3).僵尸态 进程已经结束但是父进程 ...
- Python的IDE之Pycharm的使用
Python的IDE之Pycharm的使用 一.为什么用IDE(Python集成开发环境-Pycharm) 到现在为止,我们也是写过代码的人啦,但你有没有发现,每次写代码要新建文件.写完保存时还要选择 ...
- oracle中带参存储过程的使用
Oracle中存储过程带参分为:输入参数(in)和输出参数(out) 例如: create or replace procedure out_test(v_user in emp.user_name% ...
- 非线性支持向量机SVM
非线性支持向量机SVM 对于线性不可分的数据集, 我们引入了核(参考:核方法·核技巧·核函数) 线性支持向量机的算法如下: 将线性支持向量机转换成非线性支持向量机只需要将变为核函数即可: 非线性支持向 ...
- 第04项目:淘淘商城(SpringMvc+Spring+Mybatis) 的学习实践总结【第三天】
淘淘商城(SpringMVC+Spring+Mybatis) 是传智播客在2015年9月份录制的,几年过去了.由于视频里课上老师敲的代码和项目笔记有些细节上存在出入,只有根据日志报错信息作出适当的调 ...
- 14 微服务电商【黑马乐优商城】:day03-springcloud(Hystix,Feign)
本项目的笔记和资料的Download,请点击这一句话自行获取. day01-springboot(理论篇) :day01-springboot(实践篇) day02-springcloud(理论篇一) ...
- 华为路由器AR1220E-S通过web页面不能登录
问题原因:由于在WEB页面配置了“远程信任主机”,但是信任主机和路由器不在一个网段,导致所有IP都不能通过WEB页面管理路由器 解决方案:通过console口直接连接路由器,删除信任主机,此次咨询了华 ...