图论--最小环--Floyd模板
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <stack>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = 110;
int n, m; // n:节点个数, m:边的个数
int g[MAXN][MAXN]; // 无向图
int dist[MAXN][MAXN]; // 最短路径
int r[MAXN][MAXN]; // r[i][j]: i到j的最短路径的第一步
int out[MAXN], ct; // 记录最小环
int solve(int i, int j, int k)
{ // 记录最小环
ct = 0;
while (j != i)
{
out[ct++] = j;
j = r[i][j];
}
out[ct++] = i;
out[ct++] = k;
return 0;
}
int main()
{
while (scanf("%d%d", &n, &m) != EOF)
{
int i, j, k;
for (i = 0; i < n; i++)
{
for (j = 0; j < n; j++)
{
g[i][j] = INF;
r[i][j] = i;
}
}
for (i = 0; i < m; i++)
{
int x, y, l;
scanf("%d%d%d", &x, &y, &l);
--x;
--y;
if (l < g[x][y])
{
g[x][y] = g[y][x] = l;
}
}
memmove(dist, g, sizeof(dist));
int Min = INF; // 最小环
for (k = 0; k < n; k++)
{ // Floyd
for (i = 0; i < k; i++) // 一个环中的最大结点为k(编号最大)
{
if (g[k][i] < INF)
{
for (j = i + 1; j < k; j++)
{
if (dist[i][j] < INF && g[k][j] < INF && Min > dist[i][j] + g[k][i] + g[k][j])
{
Min = dist[i][j] + g[k][i] + g[k][j];
solve(i, j, k); // 记录最小环
}
}
}
}
for (i = 0; i < n; i++)
{
if (dist[i][k] < INF)
{
for (j = 0; j < n; j++)
{
if (dist[k][j] < INF && dist[i][j] > dist[i][k]+dist[k][j])
{
dist[i][j] = dist[i][k] + dist[k][j];
r[i][j] = r[k][j];
}
}
}
}
}
if (Min < INF)
{
for (ct--; ct >= 0; ct--)
{
printf("%d", out[ct] + 1);
if (ct)
{
printf(" ");
}
}
}
else
{
printf("No solution.");
}
printf("\n");
}
return 0;
}
图论--最小环--Floyd模板的更多相关文章
- 图论--传递闭包(Floyd模板)
#include<iostream> #include<cstring> #include<cmath> using namespace std; int dp[1 ...
- Floyd判最小环算法模板
算法思想:如果存在最小环,会在编号最大的点u更新最短路径前找到这个环,发现的方法是,更新最短路径前,遍历i,j点对,一定会发现某对i到j的最短路径长度dis[i][j]+mp[j][u]+mp[u][ ...
- 图论---POJ 3660 floyd 算法(模板题)
是一道floyd变形的题目.题目让确定有几个人的位置是确定的,如果一个点有x个点能到达此点,从该点出发能到达y个点,若x+y=n-1,则该点的位置是确定的.用floyd算发出每两个点之间的距离,最后统 ...
- 图论-最短路径<Dijkstra,Floyd>
昨天: 图论-概念与记录图的方法 以上是昨天的Blog,有需要者请先阅读完以上再阅读今天的Blog. 可能今天的有点乱,好好理理,认真看完相信你会懂得 分割线 第二天 引子:昨天我们简单讲了讲图的概念 ...
- timus1004 最小环()Floyd 算法
通过别人的数据搞了好久才成功,果然还是不够成熟 做题目还是算法不能融会贯通 大意即找出图中至少3个顶点的环,且将环中点按顺序输出 用floyd算法求最小环 因为floyd算法求最短路径是通过中间量k的 ...
- 图论 Warshall 和Floyd 矩阵传递闭包
首先我们先说下图论,一般图存储可以使用邻接矩阵,或邻接表,一般使用邻接矩阵在稠密图比较省空间. 我们来说下有向图,一般的有向图也是图,图可以分为稠密图,稀疏图,那么从意思上,稠密图就是点的边比较多,稀 ...
- 图论之最短路径floyd算法
Floyd算法是图论中经典的多源最短路径算法,即求任意两点之间的最短路径. 它可采用动态规划思想,因为它满足最优子结构性质,即最短路径序列的子序列也是最短路径. 举例说明最优子结构性质,上图中1号到5 ...
- 图的连通性问题之连通和最小环——Floyd算法
Floyd 判断连通性 d[i][j]仅表示i,j之间是否联通 ;k<=n;k++) ;i<=n;i++) ;j<=n;j++) dis[i][j]=dis[i][j]||(dis[ ...
- 最小环-Floyd
floyd求最小环 在Floyd的同时,顺便算出最小环. Floyd算法 :k<=n:k++) { :i<k:i++) :j<k:j++) if(d[i][j]+m[i][k]+m[ ...
随机推荐
- django中设置定时任务
django中设置定时任务 在django中设置定时任务我们可以借用django-crontab这个第三包来实现 django-crontab只能在linux系统下使用 安装: pip install ...
- ESLint如何配置
1.简介 通过用 ESLint 来检查一些规则,我们可以: 统一代码风格规则,如:代码缩进用几个空格:是否用驼峰命名法来命名变量和函数名等. 减少错误, 如:相等比较必须用 === ,变量在使用前必须 ...
- 第八节:time和random模块
定义: 模块是一组Python代码的集合,可以使用其他模块,也可以被其他模块使用. 重点: 1.模块的名字不要和自带的模块名字相同,不然会优先调用自己的那个模块,因为查找模块的时候是按照sys.pat ...
- jquery的焦点图片无限循环关键思维
在循环的时候,关键的是按(下一页按钮)到最后一页的时候和按(上一页按钮)到到第一页的时候如何转换: 首先必须知道3个js方法,prepend().append()和clone(); prepend() ...
- 你知道如何自动保存 Spring Boot 应用进程号吗
1. 前言 欢迎阅读 Spring Boot 2 实战 系列文章. PID 对于系统运维来说并不陌生,但是对于一些开发者特别是新手还是要简单介绍一下的.它是 Process ID 的简称,是系统分配给 ...
- Docker安装Redis并介绍漂亮的可视化客户端进行操作
1 简介 Redis是使用ANSI C语言开发的基于Key-Value的高性能NoSQL数据库,在解决高并发.高可用等一系列问题中,它扮演着重要的角色.它的优势主要有: 速度快. 持久化. 原子性. ...
- W - Palindrome HDU - 1513
题目大意: 插入最少的字符,使原字符串成为回文串. 题解: LCS问题,将字符串反转,然后求这俩字符串的LCS,总长度减去LCS即可(多组输入). N最大是5E3,直接用二维数组会超内存.所以要用到滚 ...
- SSL 3.0 POODLE攻击信息泄露漏洞_CVE-2014-3566
0x01 SSL3.0简介 我们知道最开始HTTP协议传输数据的时候,数据是不加密的,不安全的,网景公司针对此,推出了SSL(secure socket layer)安全套接层.SSL3.0时,IET ...
- shiro:集成Springboot(六)
1:导入相关依赖 <!--thymeleaf 模板引擎依赖包--> <dependency> <groupId>org.springframework.boot&l ...
- Springboot:thymeleaf模板(八)
存放位置:resources\templates 访问方式:通过Controller请求访问,不可直接访问(相当于web项目的WEB-INF目录) 环境依赖: <!--thymeleaf模板支持 ...