计数题萌萌哒~

  这道题其实就是统计 \(\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]}\) 。这个式子不是很好统计,我们可以转化一下:

 \((\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]} - \sum_{i = 1}^{n}C\binom{2 * a[i]}{2 * a[i] + 2 * b[i]}) / 2\)

  这样的话,我们只需要考虑如何统计前一部分的贡献即可。前一部分的贡献是多少呢?就是平面上所有的点 \((-a[j], -b[j])\) 到达 \((a[i],b[i])\) 的方案数。这个我们可以 \(a[i]^{2}\)的 dp 统计。**启示:有时缩小限制好,有时放宽限制容斥计算大法好哇~~

#include <bits/stdc++.h>
using namespace std;
#define maxn 2500000
#define mod 1000000007
#define maxm 4020
#define int long long
int n, a[maxn], b[maxn], inv[maxn], fac[maxn];
int ans, m, S = , f[maxm][maxm]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Up(int &x, int y) { x = (x + y) % mod; }
int C(int n, int m)
{
if(n < m || m < || n < ) return ;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
} void pre()
{
fac[] = fac[] = ; inv[] = inv[] = ;
for(int i = ; i < maxn; i ++) fac[i] = fac[i - ] * i % mod;
for(int i = ; i < maxn; i ++) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < maxn; i ++) inv[i] = inv[i] * inv[i - ] % mod;
} signed main()
{
pre(); n = read();
for(int i = ; i <= n; i ++)
{
a[i] = read(), b[i] = read();
f[-a[i] + S][-b[i] + S] ++;
}
m = * S;
for(int i = ; i <= m; i ++)
for(int j = ; j <= m; j ++)
Up(f[i][j], (f[i - ][j] + f[i][j - ]) % mod);
for(int i = ; i <= n; i ++)
{
Up(ans, f[a[i] + S][b[i] + S]);
Up(ans, mod - C( * (a[i] + b[i]), * a[i]));
}
printf("%lld\n", ans * inv[] % mod);
return ;
}

【题解】Atcoder AGC#01 E-BBQ Hard的更多相关文章

  1. [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学

    题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...

  2. 【题解】Atcoder AGC#16 E-Poor Turkeys

    %拜!颜神怒A此题,像我这样的渣渣只能看看题解度日╭(╯^╰)╮在这里把两种做法都记录一下吧~ 题解做法:可以考虑单独的一只鸡 u 能否存活.首先我们将 u 加入到集合S.然后我们按照时间倒序往回推, ...

  3. 【题解】Atcoder AGC#03 E-Sequential operations on Sequence

    仙题膜拜系列...首先我们可以发现:如果在截取了一段大的区间之后再截取一段小的区间,显然是没有什么用的.所以我们可以将操作序列变成单调递增的序列. 然后怎么考虑呢?启示:不一定要考虑每一个数字出现的次 ...

  4. 【做题记录】AtCoder AGC做题记录

    做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...

  5. AtCoder AGC #2 Virtual Participation

    在知乎上听zzx大佬说AGC练智商...于是试了一下 A.Range Product 给$a$,$b$,求$\prod^{b}_{i=a}i$是正数,负数还是$0$ ...不写了 B.Box and ...

  6. Atcoder Grand Contest 001E - BBQ Hard(组合意义转化,思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another 思维题-- 注意到此题 \(n\) 数据范围很大,但是 \(a_i,b_i\) 数据范围很小,这能给我们什么启发呢? 观 ...

  7. 题解-AtCoder Code-Festival2017 Final-J Tree MST

    Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连 ...

  8. 题解-AtCoder Code-Festival2017qualA-E Modern Painting

    Problem CODE-FESTIVAL 2017 qual A 洛谷账户的提交通道 题意:有一个\(n\)行\(m\)列的方格,在边界外有可能有机器人(坐标为\((0,x),(n+1,x),(x, ...

  9. 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)

    题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...

随机推荐

  1. AOSP 设置编译输出目录

    export OUT_DIR=/media/caoxinyu/TomasYu/out 注意:export OUT_DIR= OUT_DIR 后面直接跟= ,不要有空格.否则报错.

  2. springboot之websocket

    一.WebSocket协议是基于TCP的一种新的网络协议.它实现了浏览器与服务器全双工(full-duplex)通信——允许服务器主动发送信息给客户端. 二.长久以来, 创建实现客户端和用户端之间双工 ...

  3. 【完美解决】Spark-SQL、Hive多 Metastore、多后端、多库

    [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 [完美解决]Spark-SQL.Hive多 Metastore.多后端.多库 SparkSQL 支持同时连接多种 Meta ...

  4. Question | 你所遇到的验证码问题可能都在这里了

    本文来自网易云社区 "Question"为网易云易盾的问答栏目,将会解答和呈现安全领域大家常见的问题和困惑.如果你有什么疑惑,也欢迎通过邮件(zhangyong02@corp.ne ...

  5. apache+php+mysql开发环境搭建

    一.Apache       因为Apache官网只提供源代码,如果要使用必须得自己编译,这里我选择第三方安装包Apache Lounge. 进入Apachelounge官方下载地址:http://w ...

  6. katalon系列七:Katalon Studio全局变量

    假如你有3个脚本都用到了用户名,如果是写死在脚本中,那么需要改变的时候,你需要修改3个地方,我们可以把用户名设为全局变量,在3个脚本中引用,需要修改时只要修改全局变量中的用户名值即可. 在Katalo ...

  7. HDU - 3415(DP + 单调队列)

    链接:HDU - 3415 题意:给出一个包含 n 个数的环,求满足长度大于 0 小于等于 k 的最大区间和. 题解:将数组加倍,形成环.求一个前缀和sum.枚举每一个sum[i],以 i 结尾的最大 ...

  8. [SHELL]linux环境变量

  9. Ubuntu16.04安装wps办公软件解决文字缺失

    先到wps官网下载linux版wps安装包 选择64位的alpha版本下载: 下载完后,同样是cd到Downloads目录,用dpkg命令来安装它: cd  Downloads/ sudo dpkg ...

  10. Pandas dataframe数据写入文件和数据库

    转自:http://www.dcharm.com/?p=584 Pandas是Python下一个开源数据分析的库,它提供的数据结构DataFrame极大的简化了数据分析过程中一些繁琐操作,DataFr ...