计数题萌萌哒~

  这道题其实就是统计 \(\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]}\) 。这个式子不是很好统计,我们可以转化一下:

 \((\sum_{i=1}^{n}\sum_{j=i+1}^{n}C\binom{a[i] + a[j]}{a[i] + a[j] + b[i] + b[j]} - \sum_{i = 1}^{n}C\binom{2 * a[i]}{2 * a[i] + 2 * b[i]}) / 2\)

  这样的话,我们只需要考虑如何统计前一部分的贡献即可。前一部分的贡献是多少呢?就是平面上所有的点 \((-a[j], -b[j])\) 到达 \((a[i],b[i])\) 的方案数。这个我们可以 \(a[i]^{2}\)的 dp 统计。**启示:有时缩小限制好,有时放宽限制容斥计算大法好哇~~

#include <bits/stdc++.h>
using namespace std;
#define maxn 2500000
#define mod 1000000007
#define maxm 4020
#define int long long
int n, a[maxn], b[maxn], inv[maxn], fac[maxn];
int ans, m, S = , f[maxm][maxm]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} void Up(int &x, int y) { x = (x + y) % mod; }
int C(int n, int m)
{
if(n < m || m < || n < ) return ;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
} void pre()
{
fac[] = fac[] = ; inv[] = inv[] = ;
for(int i = ; i < maxn; i ++) fac[i] = fac[i - ] * i % mod;
for(int i = ; i < maxn; i ++) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < maxn; i ++) inv[i] = inv[i] * inv[i - ] % mod;
} signed main()
{
pre(); n = read();
for(int i = ; i <= n; i ++)
{
a[i] = read(), b[i] = read();
f[-a[i] + S][-b[i] + S] ++;
}
m = * S;
for(int i = ; i <= m; i ++)
for(int j = ; j <= m; j ++)
Up(f[i][j], (f[i - ][j] + f[i][j - ]) % mod);
for(int i = ; i <= n; i ++)
{
Up(ans, f[a[i] + S][b[i] + S]);
Up(ans, mod - C( * (a[i] + b[i]), * a[i]));
}
printf("%lld\n", ans * inv[] % mod);
return ;
}

【题解】Atcoder AGC#01 E-BBQ Hard的更多相关文章

  1. [题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学

    题目 观察当k固定时答案是什么.先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数.对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出 ...

  2. 【题解】Atcoder AGC#16 E-Poor Turkeys

    %拜!颜神怒A此题,像我这样的渣渣只能看看题解度日╭(╯^╰)╮在这里把两种做法都记录一下吧~ 题解做法:可以考虑单独的一只鸡 u 能否存活.首先我们将 u 加入到集合S.然后我们按照时间倒序往回推, ...

  3. 【题解】Atcoder AGC#03 E-Sequential operations on Sequence

    仙题膜拜系列...首先我们可以发现:如果在截取了一段大的区间之后再截取一段小的区间,显然是没有什么用的.所以我们可以将操作序列变成单调递增的序列. 然后怎么考虑呢?启示:不一定要考虑每一个数字出现的次 ...

  4. 【做题记录】AtCoder AGC做题记录

    做一下AtCoder的AGC锻炼一下思维吧 目前已做题数: 75 总共题数: 239 每一场比赛后面的字母是做完的题,括号里是写完题解的题 AGC001: ABCDEF (DEF) AGC002: A ...

  5. AtCoder AGC #2 Virtual Participation

    在知乎上听zzx大佬说AGC练智商...于是试了一下 A.Range Product 给$a$,$b$,求$\prod^{b}_{i=a}i$是正数,负数还是$0$ ...不写了 B.Box and ...

  6. Atcoder Grand Contest 001E - BBQ Hard(组合意义转化,思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 Yet another 思维题-- 注意到此题 \(n\) 数据范围很大,但是 \(a_i,b_i\) 数据范围很小,这能给我们什么启发呢? 观 ...

  7. 题解-AtCoder Code-Festival2017 Final-J Tree MST

    Problem \(\mathrm{Code~Festival~2017~Final~J}\) 题意概要:一棵 \(n\) 个节点有点权边权的树.构建一张完全图,对于任意一对点 \((x,y)\),连 ...

  8. 题解-AtCoder Code-Festival2017qualA-E Modern Painting

    Problem CODE-FESTIVAL 2017 qual A 洛谷账户的提交通道 题意:有一个\(n\)行\(m\)列的方格,在边界外有可能有机器人(坐标为\((0,x),(n+1,x),(x, ...

  9. 题解——ATCoder AtCoder Grand Contest 017 B - Moderate Differences(数学,构造)

    题面 B - Moderate Differences Time limit : 2sec / Memory limit : 256MB Score : 400 points Problem Stat ...

随机推荐

  1. MVC、MVVM

    一.MVC 所谓的 MVC 是指: Model: 数据的拥有者,实现具体的业务逻辑. View: 具体的用户界面,如按钮.列表.图片. Controller: 负责将 View 中用户的动作传达给 M ...

  2. 初学Direct X (2)

    初学Direct X (2) 这一次要学习如何现实位图,尽管看过对双缓冲机制还有很多疑问,但是这并不阻碍我对他的入门了解 Direct3D提供了一个双重/后台缓冲区,在调用CreateDevice之时 ...

  3. 【WXS数据类型】Object

    Object 是一种无序的键值对. 属性: 名称 值类型 说明 [Object].constructor [String] 返回值为“Object”,表示类型的结构字符串 方法: 原型:[Object ...

  4. Tunnel上传遇到字符[NUL]问题

    模拟生产环境下数据格式,再现异常情景:   Notepad++怎样输入字符[NUL]? 安装 Hex-Editor 插件: HexEditor插件用于在notepad++中查看16进制文件,只需要将此 ...

  5. [转载] RCNN/SPP/FAST RCNN/FASTER RCNN/YOLO/SSD算法简介

    RCNN: RCNN(Regions with CNN features)是将CNN方法应用到目标检测问题上的一个里程碑,由年轻有为的RBG大神提出,借助CNN良好的特征提取和分类性能,通过Regio ...

  6. OpenCV学习5-----使用Mat合并多张图像

    最近做实验需要对比实验结果,需要将几张图片拼在一起,直观对比. 尝试用OpenCV解决. 核心思想其实是   声明一个足够大的,正好容纳下那几张图片的mat,然后将拼图依次copy到大图片相应的位置. ...

  7. Zen Coding && Emmet-Sublime 安装

    Sublime Text 插件之:Emmet,旧版称:ex-Zen Coding 更名之后增加了CSS3和HTML5许多新特性.项目地址也从 code.google 移 github. 安装: Pac ...

  8. Python函数的内省-Introspection

    Python函数可以进行内省-Introspection,查看函数内部的细节,方式就是使用函数的__code__属性. def func(a, b = 2): return a + b >> ...

  9. cp的使用

    一.形式 cp [options] source1 source2 source3 .... directory 参数意义: 参数 意义 -i 当目标文件已存在时,会询问是否覆盖 -p 连同文件的属性 ...

  10. 深入了解View的绘制流程

    1.  ViewRoot ViewRoot是连接WindowManager与DecorView的纽带,View的整个绘制流程的三大步(measure.layout.draw)都是通过ViewRoot完 ...