POJ 3254 状态压缩 DP
Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %llu
Description
Input
Output
Sample Input
Sample Output
Hint
Description
Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.
Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.
Input
Output
Sample Input
2 3
1 1 1
0 1 0
Sample Output
9
Hint
1 2 3 4
There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.
题意:
有一片地,有的地方可以种草,有的地方不能,并且相邻的两块不能同时种草,问总共有多少种种草的方法。
思路:
由于一行的状态可由前一行的状态推出,dp[i][j]+=dp[i-1][k],k,j表示此行的状态。第一道状压DP,虽然是照着别人的博客写出来的但确实学到了很多。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int MOD = 1e8;
int n, m, f[][ << ], mp[], g[][ << ];
int main()
{
while (~scanf("%d %d", &n, &m)) {
for (int i = ; i < n; ++i) {
for (int j = m - , x; j >= ; --j) {
scanf("%d", &x);
if (x) mp[i] |= ( << j);
}
}
for (int i = ; i < n; ++i) {
for (int j = ; j < ( << m); ++j) {
g[i][j] = ;
if (j & (j <<)) continue;
if (~mp[i] & j) continue;
//原来第i行的状态取反与j状态相与为1说明j状态在没草的地方放牛,所以不合法即~mat[i]&j
//判断j状态是否有相邻的两个1,若有即不合法,用j&(j<<1)判断,j<<1即j右移1位
//eg:01101--->11010,相与为1,即可判断出有相邻的1,不合法。
g[i][j] = ;
}
}
for (int j = ; j < ( << m); ++j) f[][j] = g[][j];
for (int i = ; i < n; ++i) {
for (int j = ; j < ( << m); ++j) {
f[i][j] = ;
if (!g[i][j]) continue;
for (int k = ; k < ( << m); ++k) {
if (!g[i - ][k]) continue;
if (j & k) continue; //i+1行的状态与i行的状态不冲突
f[i][j] = (f[i][j] + f[i - ][k]) % MOD;
}
}
}
int ans = ;
for (int j = ; j < ( << m); ++j) {
ans = (ans + f[n - ][j]) % MOD;
}
printf("%d\n", ans);
}
return ;
}
POJ 3254 状态压缩 DP的更多相关文章
- poj 3254 状态压缩DP
思路:把每行的数当做是一个二进制串,0不变,1变或不变,找出所有的合法二进制形式表示的整数,即相邻不同为1,那么第i-1行与第i行的状态转移方程为dp[i][j]+=dp[i-1][k]: 这个方程得 ...
- poj 3254(状态压缩+动态规划)
http://poj.org/problem?id=3254 题意:有一个n*m的农场(01矩阵),其中1表示种了草可以放牛,0表示没种草不能放牛,并且如果某个地方放了牛,它的上下左右四个方向都不能放 ...
- POJ 1185 状态压缩DP(转)
1. 为何状态压缩: 棋盘规模为n*m,且m≤10,如果用一个int表示一行上棋子的状态,足以表示m≤10所要求的范围.故想到用int s[num].至于开多大的数组,可以自己用DFS搜索试试看:也可 ...
- POJ 1185 状态压缩DP 炮兵阵地
题目直达车: POJ 1185 炮兵阵地 分析: 列( <=10 )的数据比较小, 一般会想到状压DP. Ⅰ.如果一行10全个‘P’,满足题意的状态不超过60种(可手动枚举). Ⅱ.用DFS ...
- poj 2923(状态压缩dp)
题意:就是给了你一些货物的重量,然后给了两辆车一次的载重,让你求出最少的运输次数. 分析:首先要从一辆车入手,搜出所有的一次能够运的所有状态,然后把两辆车的状态进行合并,最后就是解决了,有两种方法: ...
- poj 2688 状态压缩dp解tsp
题意: 裸的tsp. 分析: 用bfs求出随意两点之间的距离后能够暴搜也能够用next_permutation水,但效率肯定不如状压dp.dp[s][u]表示从0出发訪问过s集合中的点.眼下在点u走过 ...
- Mondriaan's Dream(POJ 2411状态压缩dp)
题意:用1*2的方格填充m*n的方格不能重叠,问有多少种填充方法 分析:dp[i][j]表示i行状态为j时的方案数,对于j,0表示该列竖放(影响下一行的该列),1表示横放成功(影响下一列)或上一列竖放 ...
- poj 2411 状态压缩dp
思路:将每一行看做一个二进制位,那么所有的合法状态为相邻为1的个数一定要为偶数个.这样就可以先把所有的合法状态找到.由于没一层的合法状态都是一样的,那么可以用一个数组保存.由第i-1行到第i行的状态转 ...
- poj 3254 状态压缩
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15285 Accepted: 8033 Desc ...
随机推荐
- Java学习笔记-10.io流
1.输入流,只能从中读取数据,而不能向其写出数据.输出流,只能想起写入字节数据,而不能从中读取. 2.InputStream的类型有: ByteArrayInputStream 包含一个内存缓冲区,字 ...
- Python基础框架和工具
最近在学Python金融大数据分析,在安装Python进行大数据分析的环境时遇到很多问题,例如:在安装pandas包时候就要到各种错误,总是缺少很多安装包,最后发现利用Python的Anaconda进 ...
- Leetcode - 461. Hamming Distance n&=(n-1) (C++)
1. 题目链接:https://leetcode.com/problems/hamming-distance/description/ 2.思路 常规做法做完看到评论区一个非常有意思的做法.用了n&a ...
- Python—字典(当索引不好用时)
一.定义与概念 1.字典是针对非序列集合而提供的一种数据类型 举例:检索学生信息. “<键><值>对”. 键(即身份证号码) 值(即学生信息). “键值对”例子 姓名和电话号码 ...
- NIO初探
NIO的前世今生 NIO又叫NonBlockingI/O,即非阻塞I/O.以此对应的,有一个更常见的IO(BIO),又叫Blocking I/O,即阻塞IO,两种都为Java的IO实现方案. NIO/ ...
- Python 字符串与基本语句
Python特点 python中没有变量的声明 语句结束后没有分号 严格要求缩进 支持很长很长的大数运算(直接在Idle中输入即可) 用"#"来注释 BIF:Bulit-in fu ...
- C# HttpWebRequest post提交数据,提交对象
1.客户端方法 //属于客户端 //要向URL Post的方法 public void PostResponse() { HttpWebRequest req = (HttpWebRequest)Ht ...
- .net 内置对象之Session对象和Session的过期时间
QQ:827969653 有需要的朋友可以下载Session类:SessionHelper类 http://technet.microsoft.com/zh-cn/library/system.web ...
- Apriori算法详解
一.Apriori 算法概述Apriori 算法是一种最有影响力的挖掘布尔关联规则的频繁项集的 算法,它是由Rakesh Agrawal 和RamakrishnanSkrikant 提出的.它使用一种 ...
- 【Docker 命令】- attach命令
docker attach :连接到正在运行中的容器. 语法 docker attach [OPTIONS] CONTAINER 要attach上去的容器必须正在运行,可以同时连接上同一个contai ...