题目链接


题解

题意

一棵树上有\(m\)条路径,可以将其中一条边的权值改为0,问最长的路径最短是多少

分析

  • 最短的路径最长自然想到二分最长路径,设其为\(dis\)
  • 关键在于如何check
  • check的关键又是将哪条边改为0
  • 贪心,如果所有超过\(dis\)的路径能在一条边上重合,则将那条边改为0,之后再判断改为0后是否最大的路径小于\(dis\);若无法将所有超过\(dis\)的边重合在一条边上,直接return false;

做法

  • 算两个点之间的路径长用dfs + LCA来实现
  • 判断路径之间的重合用树上差分来实现
  • 这里用的是倍增

注意事项

无向边要把数组开两倍!!!

代码

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring> using namespace std; const int MAXN = 500500;
int n, m;
int logn;
int u[MAXN], v[MAXN], lca[MAXN];
int vis[MAXN], dep[MAXN], fa[MAXN][25];
int dfn[MAXN], Index, Edge_cnt;
int Max_dis = -1, treeC[MAXN], predis[MAXN], dissum[MAXN], distence[MAXN]; int ecnt;
struct node
{
int v;
int w;
node *next;
}pool[MAXN << 1], *head[MAXN << 1]; void addedge(int u, int v, int w)
{
node *p = &pool[++ecnt], *q = &pool[++ecnt];
p->v = v, p->w = w, p->next = head[u], head[u] = p;
q->v = u, q->w = w, q->next = head[v], head[v] = q;
} void dfs(int u)
{
int v;
dfn[++Index] = u;
vis[u] = 1;
for(node *p = head[u]; p; p = p->next)
if(!vis[v = p->v])
{
dep[v] = dep[u] + 1;
dissum[v] = dissum[u] + p->w;
fa[v][0] = u;
predis[v] = p->w;
dfs(v);
}
} int LCA(int u, int v)
{
if(dep[u] < dep[v]) swap(u, v);
for(int i = 20; i >= 0; i--)
if(fa[u][i] != 0 && dep[fa[u][i]] >= dep[v])
u = fa[u][i];
if(u == v) return u;
for(int i = 20; i >= 0; i--)
if(fa[u][i] != fa[v][i])
u = fa[u][i], v = fa[v][i];
return fa[u][0];
} bool check(int dis)
{
memset(treeC, 0, sizeof(treeC));
Edge_cnt = 0;
for(int i = 1; i <= m; i++)
if(distence[i] > dis)
{
++Edge_cnt;
treeC[u[i]]++;
treeC[v[i]]++;
treeC[lca[i]] -= 2;
}
for(int i = n; i >= 1; i--)
{
int t = dfn[i];
treeC[fa[t][0]] += treeC[t];
if(dis >= Max_dis - predis[t] && treeC[t] == Edge_cnt)
return true;
}
return false;
} int main()
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n - 1; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
addedge(u, v, w);
}
dep[1] = 1, dep[0] = -1;
dfs(1);
for(int j = 1; j <= 20; j++)
for(int i = 1; i <= n; i++)
fa[i][j] = fa[fa[i][j - 1]][j - 1];
for(int i = 1; i <= m; i++)
{
scanf("%d%d", &u[i], &v[i]);
lca[i] = LCA(u[i], v[i]);
distence[i] = dissum[u[i]] + dissum[v[i]] - dissum[lca[i]] * 2;
Max_dis = max(Max_dis, distence[i]);
}
int ans = -1;
int l = 0, r = Max_dis;
while(l <= r)
{
int mid = (l + r) / 2;
if(check(mid)) r = mid - 1, ans = mid;
else l = mid + 1;
}
printf("%d\n", ans);
return 0;
}

题解 【luogu P2680 NOIp提高组2015 运输计划】的更多相关文章

  1. 题解——洛谷 P2680 NOIP提高组 2015 运输计划

    树上差分加上二分答案 详细题解待填坑 #include <cstdio> #include <algorithm> #include <cstring> using ...

  2. 【NOIP】提高组2015 运输计划

    [题意]n个点的树,m条链,求将一条边的权值置为0使得最大链长最小. [算法]二分+树上差分 [题解] 最大值最小化问题,先考虑二分最大链长. 对所有链长>mid的链整体+1(树上差分). 然后 ...

  3. 树型大融合——NOIP提高组2015 D1T3 【运输计划】

    下午用一个小时看了一下树上差分,打了个差分模板,A了3题,真的爽! 题目描述: 公元2044 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 ...

  4. 【NOIP2015提高组】运输计划

    https://daniu.luogu.org/problem/show?pid=2680 使完成所有运输计划的时间最短,也就是使时间最长的运输计划耗时最短.最大值最小问题考虑用二分答案,每次chec ...

  5. 题解 【luogu P1541 NOIp提高组2010 乌龟棋】

    题目链接 题解 题意: 有一些格子,每个格子有一定分数. 给你四种卡片,每次可以使用卡片来前进1或2或3或4个格子并拾取格子上的分数 每张卡片有数量限制.求最大分数. 分析 设\(dp[i]\)为第前 ...

  6. 题解 【luoguP1967 NOIp提高组2013 货车运输】

    题目链接 题解 题意 给你一个无向图,求两个点之间的一条路径,使路径上的最小值最大 算法:Kruskal最大生成树+倍增lca 分析 首先容易知道,答案一定在该图的最大生成树上 之后问题便转换成了树上 ...

  7. 题解【luoguP1525 NOIp提高组2010 关押罪犯】

    题目链接 题解 算法: 一个经典的并查集 但是需要用一点贪心的思想 做法: 先将给的冲突们按冲突值从大到小进行排序(这很显然) 然后一个一个的遍历它们 如果发现其中的一个冲突里的两个人在同一个集合里, ...

  8. 题解【luoguP1351 NOIp提高组2014 联合权值】

    题目链接 题意:给定一个无根树,每个点有一个权值.若两个点 \(i,j\) 之间距离为\(2\),则有联合权值 \(w_i \times w_j\).求所有的联合权值的和与最大值 分析: 暴力求,每个 ...

  9. NOIP2015_提高组Day2_3_运输计划

    这题思路很简单: 先对每个询问求距离,对距离由大到小排序, 二分最小距离,验证是否可行,验证时用差分处理: #include<iostream> #include<cstring&g ...

随机推荐

  1. lintcode491 回文数

    回文数 判断一个正整数是不是回文数. 回文数的定义是,将这个数反转之后,得到的数仍然是同一个数. 注意事项 给的数一定保证是32位正整数,但是反转之后的数就未必了. 您在真实的面试中是否遇到过这个题? ...

  2. 【转】Buff机制及其实际运用

    转自 http://bbs.gameres.com/forum.php?mod=viewthread&tid=215027 首先我想说的是,这是一套机制,并不是单独的一个系统,所谓机制就是一种 ...

  3. java并发总览

  4. opencv-学习笔记(2)

    opencv-学习笔记(2) 这章记录了 获取像素点,改变像素点 获取图像的属性(行,列,通道数,数据类型) roi感应区 拆分以及合并图像通道 边缘扩充 opencv获取像素点,改变像素点 ---- ...

  5. hive创建外部表

    Create [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] ...

  6. Python—字典(当索引不好用时)

    一.定义与概念 1.字典是针对非序列集合而提供的一种数据类型 举例:检索学生信息. “<键><值>对”. 键(即身份证号码) 值(即学生信息). “键值对”例子 姓名和电话号码 ...

  7. Java学习个人备忘录之关键字final

    final关键字final可以修饰类,方法,变量.final修饰的类不可以被继承final修饰的方法不可以被覆盖final修饰的变量是一个常量.只能被赋值一次.内部类只能访问被final修饰的局部变量 ...

  8. 找bug——加分作业

    bug1:while循环中的*des++ =*src++; 不能这么写吧... bug2:maxSize没有定义 暂时看到这么多

  9. udf.dll 源码

    一点关于UDF的发散思路 Author:mer4en7y Team:90sec 声明:UDF源码作者langouster 相信各位牛对UDF都不会陌生,看论坛叶总共享了一份UDF源码,以前一直没看过, ...

  10. 我们在删除SQL Sever某个数据库表中数据的时候,希望ID重新从1开始,而不是紧跟着最后一个ID开始需要的命令

    一.如果数据重要,请先备份数据 二.删除表中数据 SQL: Delete From ('表名')  如:Delete From abcd 三.执行新语句 SQL: dbcc checkident('表 ...