图论:最短路-Dijkstra
Dijkstra+堆优化具有稳定的时间复杂度,在一些数据范围要求比较严格(准确来说是图比较苛刻)的时候能够保证稳定的时间复杂度
但是Dijkstra不能够解决负边权的问题,所以在使用的时候一定要仔细读题
如果题目说了边权非负,首选Dijkstra算法, 如果图不是一些特殊的数据,可以尝试SPFA算法,毕竟在稀疏图面前,SPFA有着绝对的优势
Dijkstra和Prim很相似,它们的区别主要是d的含义,前者是到s的临时最短距离,后者是到树的临时最短距离,相同点是,每次找d最小的更新其它点的距离
然后,我们开始介绍用法:
int s,n,m,cnt;
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
struct HeapNode{int d,u;bool operator <(const HeapNode& x) const{return d>x.d;}};
priority_queue<HeapNode> q;
在Bellman-Ford中相同的字眼我们不介绍,意义一致
HeapNode结构体和优先队列用来实现一个最小堆,堆元素是点,记录了节点号和距离值
void dijkstra(int s)
{
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
HeapNode p;
p.d=;p.u=s;q.push(p);
while(!q.empty())
{
HeapNode x=q.top(); q.pop();
int u=x.u;
if(x.d!=d[u]) continue;
for(int tmp=g[u];tmp;tmp=e[tmp].next)
if(d[e[tmp].t]>d[u]+e[tmp].w)
{
d[e[tmp].t]=d[u]+e[tmp].w;
p.d=d[e[tmp].t];p.u=e[tmp].t;q.push(p);
}
}
}
如果你能够写明白邻接矩阵的Dijkstra算法,这里具有完全一致的意义,只不过用最小堆来找距离当前点集距离最小的点,把一遍遍历变成了Log级别的
然后这里的Dijkstra算法如果用邻接矩阵的话,就是被打回原形了,所以一定要用邻接表或者邻接数组来存储
下面给出完整实现:
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int INF=0x7fffffff;
const int maxn=;
const int maxm=;
int s,n,m,cnt;
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
struct HeapNode{int d,u;bool operator <(const HeapNode& x) const{return d>x.d;}};
priority_queue<HeapNode> q;
void addedge(int x,int y,int z)
{
cnt++;e[cnt].u=x;e[cnt].t=y;e[cnt].w=z;
e[cnt].next=g[x];g[x]=cnt;
}
void dijkstra(int s)
{
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
HeapNode p;
p.d=;p.u=s;q.push(p);
while(!q.empty())
{
HeapNode x=q.top(); q.pop();
int u=x.u;
if(x.d!=d[u]) continue;
for(int tmp=g[u];tmp;tmp=e[tmp].next)
if(d[e[tmp].t]>d[u]+e[tmp].w)
{
d[e[tmp].t]=d[u]+e[tmp].w;
p.d=d[e[tmp].t];p.u=e[tmp].t;q.push(p);
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
int x,y,z;
for(int i=;i<=m;i++) {scanf("%d%d%d",&x,&y,&z);addedge(x,y,z);}
dijkstra(s);
for(int i=;i<=n;i++) {printf("%d ",d[i]);}
return ;
}
图论:最短路-Dijkstra的更多相关文章
- 图论--最短路--dijkstra(含路径输出)模板
#include<iostream> #include<stack> #include<queue> #include<cstring> #includ ...
- 图论最短路——dijkstra
下午直接开始dijkstra的堆优化,很简单的这里把书上的原理说一下吧,小心和prim最小生成树的堆优化迷,Dijkstra算法基于贪心思想,它只适用于所有边都是非负数的图.当变长z都是非负数的时候, ...
- 图论--最短路-- Dijkstra模板(目前见到的最好用的)
之前的我那个板子,老是卡内存,不知道为什么,我看别人过的那个题都是结构体,我就开始对自己板子做了修改,然后他奶奶的就过了,而且速度也提高了,内存也小了.(自从用了这个板子,隔壁小孩馋哭了)也不知道为啥 ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- 图论(最短路&最小生成树)
图论 图的定义与概念 图的分类 图,根据点数和边数可分为三种:完全图,稠密图与稀疏图. 完全图,即\(m=n^2\)的图\((m\)为边数,\(n\)为点数\()\).如: 1 1 0 1 2 1 1 ...
- 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)
layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...
- 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)
layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...
- 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)
layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...
- hdu 2544 最短路 Dijkstra
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...
- 单源最短路dijkstra算法&&优化史
一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...
随机推荐
- HDU 3467 Song of the Siren(圆交)
Problem Description In the unimaginable popular DotA game, a hero Naga Siren, also known as Slithice ...
- JavaScript闭包总结
闭包是你家庭中的第三者你在享受着第三者给你带来的便利时,而你的家庭也随时触发前所未有的危机(直男癌患者的观点);闭包是指有权访问另一个函数作用域中的变量的函数,创建闭包的常见的方式,就是在一个函数内部 ...
- 我的Vscode配置
"editor.fontSize": 17,//字体大小 "editor.wordWrap": "on",//软换行 "files ...
- 关于css的总结
写在前面 ,学好css,需要长期的推敲和积累 ,细节是不断完善的,逐渐形成自己的风格 让自己的css更加接近优雅. 下面来总结一些我觉得比较好的css代码风格 : 1. 一般网页中的背景 用 ...
- TCP系列39—拥塞控制—2、拥塞相关算法及基础知识
一.拥塞控制的相关算法 早期的TCP协议只有基于窗口的流控(flow control)机制而没有拥塞控制机制,因而易导致网络拥塞.1988年Jacobson针对TCP在网络拥塞控制方面的不足,提出了& ...
- 安装配置erlang_db_driver
erlang-db-driver是北京融易通公司开源的一个erlang支持众多数据库的一个驱动类库,据其wiki介绍,其支持MySQL, Oracle, Sybase, DB2 and Informi ...
- centos7 安装 httpd并打开测试页
systemctl start firewalld.service#启动firewallsystemctl stop firewalld.service#停止firewallsystemctl dis ...
- MYsql 数据库密码忘记(Window)-2(mysql 5.7)
很久没用Mysql了,再次打开,发现用不了了,密码忘了,服务也无法打开,在cmd中输入mysql之后,显示不是内部指令. 看来问题是mysql服务打不开了 (1)在cmd中 输入net start m ...
- nginx 反向代理 ,入门
入门:http://www.cnblogs.com/jjzd/p/6691500.html 启动,重新加载:http://blog.csdn.net/zhongguozhichuang/article ...
- 【.Net】浅谈C#中的值类型和引用类型
在C#中,值类型和引用类型是相当重要的两个概念,必须在设计类型的时候就决定类型实例的行为.如果在编写代码时不能理解引用类型和值类型的区别,那么将会给代码带来不必要的异常.很多人就是因为没有弄清楚这两个 ...