Dijkstra+堆优化具有稳定的时间复杂度,在一些数据范围要求比较严格(准确来说是图比较苛刻)的时候能够保证稳定的时间复杂度

但是Dijkstra不能够解决负边权的问题,所以在使用的时候一定要仔细读题

如果题目说了边权非负,首选Dijkstra算法, 如果图不是一些特殊的数据,可以尝试SPFA算法,毕竟在稀疏图面前,SPFA有着绝对的优势

Dijkstra和Prim很相似,它们的区别主要是d的含义,前者是到s的临时最短距离,后者是到树的临时最短距离,相同点是,每次找d最小的更新其它点的距离

然后,我们开始介绍用法:

int s,n,m,cnt;
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
struct HeapNode{int d,u;bool operator <(const HeapNode& x) const{return d>x.d;}};
priority_queue<HeapNode> q;

在Bellman-Ford中相同的字眼我们不介绍,意义一致

HeapNode结构体和优先队列用来实现一个最小堆,堆元素是点,记录了节点号和距离值

void dijkstra(int s)
{
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
HeapNode p;
p.d=;p.u=s;q.push(p);
while(!q.empty())
{
HeapNode x=q.top(); q.pop();
int u=x.u;
if(x.d!=d[u]) continue;
for(int tmp=g[u];tmp;tmp=e[tmp].next)
if(d[e[tmp].t]>d[u]+e[tmp].w)
{
d[e[tmp].t]=d[u]+e[tmp].w;
p.d=d[e[tmp].t];p.u=e[tmp].t;q.push(p);
}
}
}

如果你能够写明白邻接矩阵的Dijkstra算法,这里具有完全一致的意义,只不过用最小堆来找距离当前点集距离最小的点,把一遍遍历变成了Log级别的

然后这里的Dijkstra算法如果用邻接矩阵的话,就是被打回原形了,所以一定要用邻接表或者邻接数组来存储

下面给出完整实现:

 #include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int INF=0x7fffffff;
const int maxn=;
const int maxm=;
int s,n,m,cnt;
int g[maxn],d[maxn];
struct Edge{int u,t,w,next;}e[maxm];
struct HeapNode{int d,u;bool operator <(const HeapNode& x) const{return d>x.d;}};
priority_queue<HeapNode> q;
void addedge(int x,int y,int z)
{
cnt++;e[cnt].u=x;e[cnt].t=y;e[cnt].w=z;
e[cnt].next=g[x];g[x]=cnt;
}
void dijkstra(int s)
{
for(int i=;i<=n;i++) d[i]=INF;
d[s]=;
HeapNode p;
p.d=;p.u=s;q.push(p);
while(!q.empty())
{
HeapNode x=q.top(); q.pop();
int u=x.u;
if(x.d!=d[u]) continue;
for(int tmp=g[u];tmp;tmp=e[tmp].next)
if(d[e[tmp].t]>d[u]+e[tmp].w)
{
d[e[tmp].t]=d[u]+e[tmp].w;
p.d=d[e[tmp].t];p.u=e[tmp].t;q.push(p);
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&s);
int x,y,z;
for(int i=;i<=m;i++) {scanf("%d%d%d",&x,&y,&z);addedge(x,y,z);}
dijkstra(s);
for(int i=;i<=n;i++) {printf("%d ",d[i]);}
return ;
}

图论:最短路-Dijkstra的更多相关文章

  1. 图论--最短路--dijkstra(含路径输出)模板

    #include<iostream> #include<stack> #include<queue> #include<cstring> #includ ...

  2. 图论最短路——dijkstra

    下午直接开始dijkstra的堆优化,很简单的这里把书上的原理说一下吧,小心和prim最小生成树的堆优化迷,Dijkstra算法基于贪心思想,它只适用于所有边都是非负数的图.当变长z都是非负数的时候, ...

  3. 图论--最短路-- Dijkstra模板(目前见到的最好用的)

    之前的我那个板子,老是卡内存,不知道为什么,我看别人过的那个题都是结构体,我就开始对自己板子做了修改,然后他奶奶的就过了,而且速度也提高了,内存也小了.(自从用了这个板子,隔壁小孩馋哭了)也不知道为啥 ...

  4. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  5. 图论(最短路&最小生成树)

    图论 图的定义与概念 图的分类 图,根据点数和边数可分为三种:完全图,稠密图与稀疏图. 完全图,即\(m=n^2\)的图\((m\)为边数,\(n\)为点数\()\).如: 1 1 0 1 2 1 1 ...

  6. 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)

    layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...

  7. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  8. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  9. hdu 2544 最短路 Dijkstra

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...

  10. 单源最短路dijkstra算法&&优化史

    一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...

随机推荐

  1. HDU 3007 Buried memory(计算几何の最小圆覆盖,模版题)

    Problem Description Each person had do something foolish along with his or her growth.But,when he or ...

  2. VUE中关于表单提交的简单实现

    main.js import Vue from "../vue.js"; import App from "./App.js"; //启动 new Vue({ ...

  3. Java学习个人备忘录之继承

    继承的好处1. 提高了代码的复用性.2. 让类与类之间产生了关系,给第三个特征多态提供了前提. java中支持单继承,不直接支持多继承,但对C++中的多继承机制进行改良.java支持多层继承. C继承 ...

  4. 初学c#(又要打代码了好难)

    因为我原来从没有学过C#,所以要重新看一个语言的基本语法,仔细阅读了老师的作业要求,发现第一个10分的作业如果要用c语言写我是可以完成的,于是定个小目标就是在周日前完成作业的第一步.今天我在菜鸟教程的 ...

  5. 第三部分shell编程3(shell脚本编写1)

    做监控和备份最多 1. shell脚本是什么它是一种脚本语言,并非编程语言可以使用一些逻辑判断.循环等语法可以自定义子函数是系统命令的集合shell脚本可以实现自动化运维,大大增加我们的工作效率 第一 ...

  6. sql sever 数据表

    对视图进行操作,要在第三块区域进行添加记录操作,回车,然后会同步到所有相关数据表中. 记录不是列,而是行,不要混淆. 第二块区域是各个属性,就是说明: 第一块区域是要进行显示的字段,选中什么 显示什么 ...

  7. 百度地图常用2.0使用以及调用js

    /** * 生成一条路线 * @param {Object} baiduMap 百度地图的 map对象 * @param {Object} lineColor 线路颜色 * @param {Objec ...

  8. 【Python】关于Python里面小数点精度控制的问题

    基础 浮点数是用机器上浮点数的本机双精度(64 bit)表示的.提供大约17位的精度和范围从-308到308的指数.和C语言里面的double类型相同.Python不支持32bit的单精度浮点数.如果 ...

  9. 可持久化Treap

    终于写了一次可持久化Treap,做的是可持久化序列的模板题. Treap Treap=Tree+Heap,是一个随机化的数据结构.它的每个节点至少有两个关键字,一个是我们要存储的\(val\),一个是 ...

  10. 【bzoj4444】[Scoi2015]国旗计划 倍增

    题目描述 给出一个圈和若干段,问:对于所有的 $i$ ,选择第 $i$ 段的情况下,最少需要选择多少段(包括第 $i$ 段)能够覆盖整个圈? 输入 第1行,包含2个正整数N,M,分别表示边防战士数量和 ...