【POJ 2409】Let it Bead
http://poj.org/problem?id=2409
Burnside引理:设\(G\)是\(X\)的置换群,而\(\mathcal{C}\)是\(X\)中一个满足下面条件的着色集合:对于\(G\)中所有的\(f\)和\(\mathcal{C}\)中所有的\(\mathbf{c}\)都有\(f*\mathbf{c}\)仍在\(\mathcal{C}\)中,则\(\mathcal{C}\)中非等价着色数\(N(G,\mathcal{C})\)由下式给出:$$N(G,\mathcal{C})=\frac 1{|G|}\sum_{f\in G}|\mathcal{C}(f)|$$
换言之,\(\mathcal{C}\)中非等价的着色数等于在\(G\)中的置换作用下保持不变的着色的平均数。
直接套用定理就可以了qwq
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int ipow(int a, int b) {
int ret = 1, w = a;
while (b) {
if (b & 1) ret *= w;
w *= w;
b >>= 1;
}
return ret;
}
int c, s, ans, half;
int gcd(int a, int b) {return b ? gcd(b, a % b) : a;}
int main() {
while (~scanf("%d%d", &c, &s)) {
if (c == 0 && s == 0) break;
ans = 0;
for (int i = 1; i <= s; ++i)
ans += ipow(c, gcd(i, s));
half = (s + 1) >> 1;
if (s & 1)
ans += s * ipow(c, half);
else
ans += (s >> 1) * (ipow(c, half) + ipow(c, half + 1));
printf("%d\n", ans / (s << 1));
}
return 0;
}
【POJ 2409】Let it Bead的更多相关文章
- 【POJ 2409】 Let it Bead(置换、burnside引理)
Let it Bead "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. ...
- bzoj 2295: 【POJ Challenge】我爱你啊
2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec Memory Limit: 128 MB Description ftiasch是个十分受女生欢迎的同学,所以 ...
- 【链表】BZOJ 2288: 【POJ Challenge】生日礼物
2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 382 Solved: 111[Submit][S ...
- BZOJ2288: 【POJ Challenge】生日礼物
2288: [POJ Challenge]生日礼物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 284 Solved: 82[Submit][St ...
- BZOJ2293: 【POJ Challenge】吉他英雄
2293: [POJ Challenge]吉他英雄 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 80 Solved: 59[Submit][Stat ...
- BZOJ2287: 【POJ Challenge】消失之物
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 254 Solved: 140[Submit][S ...
- BZOJ2295: 【POJ Challenge】我爱你啊
2295: [POJ Challenge]我爱你啊 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 126 Solved: 90[Submit][Sta ...
- BZOJ2296: 【POJ Challenge】随机种子
2296: [POJ Challenge]随机种子 Time Limit: 1 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 114 Solv ...
- BZOJ2292: 【POJ Challenge 】永远挑战
2292: [POJ Challenge ]永远挑战 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 513 Solved: 201[Submit][ ...
随机推荐
- bzoj 3126: [Usaco2013 Open]Photo——单调队列优化dp
Description 给你一个n长度的数轴和m个区间,每个区间里有且仅有一个点,问能有多少个点 Input * Line 1: Two integers N and M. * Lines 2..M+ ...
- 【BZOJ】1697: [Usaco2007 Feb]Cow Sorting牛排序
[算法]数学置换 [题意]给定n个数,要求通过若干次交换两个数的操作得到排序后的状态,每次交换代价为两数之和,求最小代价. [题解] 考虑置换的定义:置换就是把n个数做一个全排列. 从原数组到排序数组 ...
- SQL Workbench/J
最近测试segment, 使用了一个新的DB--SQL Workbench/J, 参考文档:http://docs.aws.amazon.com/redshift/latest/mgmt/connec ...
- 【Python学习笔记】colormap的参数及其对应的色条
- Python大牛开小灶,一对一问答
CSDN知识小饭桌 大牛开小灶 小范围,高质量,在线交流QA 参与嘉宾 知识库特邀编辑伊海波,滴滴出行工程师,曾任龙图龙图游戏数据分析部技术负责人.CSDN博客专家,资深Python/Golang ...
- 函数导出在kvm_intel.ko,kvm.ko不共享
KVM一共包含了三个内核模块,kvm_intel.ko,kvm_amd.ko,kvm.ko.其中两个重要文件x86.c和vmx.c在编译后分别会生成kvm_intel.ko和kvm.ko两个内核模块, ...
- 获取并编译最新的Notepad++源码
获取并编译最新的Notepad++源码 http://blog.csdn.net/u012814856/article/details/68947310 Notepad++源码编译及其分析 http: ...
- 项目评审ppt的纲要
1.prd不能模糊,产品的问题全部明确 2.收益在哪里 3.设计体现业务4.怎样保证数据的前后协作5.异常如何处理6.技术解决的痛点7.对外部依赖8.性能指标预期(响应时间)9.
- Deep Learning基础--26种神经网络激活函数可视化
在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为.正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分 ...
- mysql 安装和配置
mysql 安装: 在命令行输入 sudo apt-get install mysql-server 安装过程中会跳出来一个窗口,输入数据库root用户的密码(必须输入密码) 安装完成后 通过 my ...