Description

现在有一颗以\(1\)为根节点的由\(n\)个节点组成的树,树上每个节点上都有一个权值\(v_i\)。现在有\(Q\)次操作,操作如下:

  • 1\(\;x\;y\):查询节点\(x\)的子树中与\(y\)异或结果的最大值
  • 2\(\;x\;y\;z\):查询路径\(x\)到\(y\)上点与\(z\)异或结果最大值

Input

第一行是两个数字\(n,Q\);

第二行是\(n\)个数字用空格隔开,第\(i\)个数字\(v_i\)表示点\(i\)上的权值

接下来\(n-1\)行,每行两个数,\(x,y\),表示节点\(x\)与\(y\)之间有边

接下来\(Q\)行,每一行为一个查询,格式如上所述.

Output

对于每一个查询,输出一行,表示满足条件的最大值。

表示不太会可持久化\(01Trie\)

参考着题解码了出来,还是有点不懂.

但是又感觉懂得差不多。

这个题差不多可以自己码出来,很好的一个题。

可持久化\(01Trie\)思想还行,类似于主席树思想.

用到了\(lastroot\).

对于现在的自己,不太想深究具体构造,感觉网上讲解的这个不是很好。

打算活过\(NOIP\)之后写一篇讲解。

代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#define R register using namespace std; const int maxn= 1e5+8; inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} struct Trie
{
int root[maxn],ch[maxn*35][2],tot,cnt[maxn*35];
Trie(){root[0]=tot=1;}
inline void insert(int lastroot,int &nowroot,int x)
{
nowroot=++tot;
int u=nowroot;
for(R int i=30;~i;i--)
{
R int bit=(x>>i)&1;
ch[u][!bit]=ch[lastroot][!bit];
ch[u][bit]=++tot;
u=ch[u][bit];
lastroot=ch[lastroot][bit];
cnt[u]=cnt[lastroot]+1;
}
} inline int query(int l,int r,int x)
{
int res=0;
for(R int i=30;~i;i--)
{
R int bit=(x>>i)&1;
if(cnt[ch[r][!bit]]-cnt[ch[l][!bit]])
{
r=ch[r][!bit];
l=ch[l][!bit];
res+=(1<<i);
}
else
{
r=ch[r][bit];
l=ch[l][bit];
}
}
return res;
}
}tr,se; int dfn[maxn],fdfn[maxn],val[maxn],idx,depth[maxn]; int head[maxn],tot,l[maxn],r[maxn],size[maxn];
struct cod{int u,v;}edge[maxn<<1]; inline void add(R int x,R int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
} int f[maxn][21]; void dfs(R int u,R int fa)
{
tr.insert(tr.root[fa],tr.root[u],val[u]);
f[u][0]=fa;depth[u]=depth[fa]+1;
dfn[u]=++idx,fdfn[idx]=u;size[u]=1;
for(R int i=1;(1<<i)<=depth[u];i++)
f[u][i]=f[f[u][i-1]][i-1];
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs(edge[i].v,u);
size[u]+=size[edge[i].v];
}
} inline int lca(R int x,R int y)
{
if(depth[x]>depth[y])swap(x,y);
for(R int i=17;~i;i--)
if(depth[x]+(1<<i)<=depth[y])
y=f[y][i];
if(x==y)return y;
for(R int i=17;~i;i--)
{
if(f[x][i]==f[y][i])continue;
x=f[x][i],y=f[y][i];
}
return f[x][0];
} int n,q; int main()
{
in(n),in(q);
for(R int i=1;i<=n;i++)in(val[i]);
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y),add(y,x);
}
dfs(1,0);
for(R int i=1;i<=n;i++)
se.insert(se.root[i-1],se.root[i],val[fdfn[i]]);
for(R int opt,x,y,z;q;q--)
{
in(opt);
if(opt==1)
{
in(x),in(y);
printf("%d\n",se.query(se.root[dfn[x]-1],se.root[dfn[x]+size[x]-1],y));
}
else
{
in(x),in(y),in(z);
int la=lca(x,y);
printf("%d\n",max(tr.query(tr.root[f[la][0]],tr.root[x],z),tr.query(tr.root[f[la][0]],tr.root[y],z)));
}
}
}

可持久化01Trie树+LCA【p4592】[TJOI2018]异或的更多相关文章

  1. 可持久化01Trie树【p4735(bzoj3261)】最大异或和

    Description 给定一个非负整数序列\(\{a\}\),初始长度为\(N\). 有\(M\)个操作,有以下两种操作类型: A x:添加操作,表示在序列末尾添加一个数\(x\),序列的长度\(N ...

  2. 洛谷 P4592 [TJOI2018]异或 解题报告

    P4592 [TJOI2018]异或 题目描述 现在有一颗以\(1\)为根节点的由\(n\)个节点组成的树,树上每个节点上都有一个权值\(v_i\).现在有\(Q\)次操作,操作如下: 1 x y:查 ...

  3. 可持久化0-1Trie树

    我跟可持久化数据结构杠上了 \(QwQ\) .三天模拟赛考了两次可持久化数据结构(主席树.可持久化0-1Trie树),woc. 目录: 个人理解 时空复杂度分析 例题及简析 一.个人理解 可持久化0- ...

  4. bzoj 4137 [FJOI2015]火星商店问题——线段树分治+可持久化01trie树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4137 关于可持久化01trie树:https://www.cnblogs.com/LadyL ...

  5. BZOJ 2588: Spoj 10628. Count on a tree-可持久化线段树+LCA(点权)(树上的操作) 无语(为什么我的LCA的板子不对)

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 9280  Solved: 2421 ...

  6. Hdu-4757 Tree(可持久化字典树+lca)

    题目链接:点这 我的github地址:点这     Problem Description   Zero and One are good friends who always have fun wi ...

  7. 洛谷P4592 [TJOI2018]异或(可持久化01Trie)

    题意 题目链接 可持久化01Trie板子题 对于两个操作分别开就行了 #include<bits/stdc++.h> using namespace std; const int MAXN ...

  8. 洛谷P4592 [TJOI2018]异或 【可持久化trie树】

    题目链接 BZOJ4592 题解 可持久化trie树裸题 写完就A了 #include<algorithm> #include<iostream> #include<cs ...

  9. BZOJ 3261: 最大异或和位置-贪心+可持久化01Trie树

    3261: 最大异或和 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 3519  Solved: 1493[Submit][Status][Discu ...

随机推荐

  1. Independence.

    It's not giving up, it's letting go, and moving to a better place. I will survive and be the one who ...

  2. 「模板」「讲解」Treap名次树

    Treap实现名次树 前言 学平衡树的过程可以说是相当艰难.浏览Blog的过程中看到大量指针版平衡树,不擅长指针操作的我已经接近崩溃.于是,我想着一定要写一篇非指针实现的Treap的Blog. 具体如 ...

  3. Redis 键值数据类型及基本操作

    到目前为止,Redis 支持的键值数据类型如下: 字符串(String) 哈希(Map) 列表(list) 集合(sets) 有序集合(sorted sets)   1. String 字符串类型 s ...

  4. UIPageControl---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...

  5. spring 那点事

    Spring核心功能 DI(IOC) 何谓DI(IOC) DI(依赖注入)是spring的核心功能之一. Dependency Injection 和 Inversion of Control 其实就 ...

  6. javascript继承机制 & call apply使用说明

    一.继承机制 1.对象冒充:构造函数使用 this 关键字给所有属性和方法赋值,可使 ClassA 构造函数成为 ClassB 的方法,然后调用它. function ClassZ() { this. ...

  7. 【转】ps命令详解

    原文地址:http://apps.hi.baidu.com/share/detail/32573968 有 时候系统管理员可能只关心现在系统中运行着哪些程序,而不想知道有哪些进程在运行.由于一个应用程 ...

  8. 【转】gif文件格式详解

    1.概述 ~~~~~~~~ GIF(Graphics Interchange Format,图形交换格式)文件是由 CompuServe公司开发的图形文件格式,版权所有,任何商业目的使用均须 Comp ...

  9. CTF线下赛AWD模式下的生存技巧

    作者:Veneno@Nu1L 稿费:200RMB 投稿方式:发送邮件至linwei#360.cn,或登陆网页版在线投稿 原文:https://www.anquanke.com/post/id/8467 ...

  10. python模块(requests,logging)

    一.requests Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythone ...