K-近邻(KNN)算法
1,KNN算法对未知类别属性的数据集中的每个点依次执行以下操作:
- 计算已知类别数据集中的点与当前点之间的距离;
- 按照距离递增排序;
- 选取与当前点距离最小的k个点;
- 确定前k个点所在类别的出现频率;
- 返回前k个点出现频率最高的类别作为当前点的预测分类;

2,代码:
from numpy import *
import operator def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [, ], [, 0.1]])
labels = ['A', 'A', 'B', 'B']
return group, labels def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[] //计算行数,shape[1]时计算列数
diffMat = tile(inX, (dataSetSize, )) - dataSet //俩点之间的距离,坐标相减 tail(a,(b,c)) b为控制行数,c为控制列数
sqDiffMat = diffMat ** 2 //平方
sqDistances = sqDiffMat.sum(axis=) //axis=1为列相加,0时为行相加
distances = sqDistances ** 0.5 //开根号
sortedDistIndicies = distances.argsort() //将元素按从小到大的顺序返回下标
classCount = {}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel, ) + 1 //get(k,v)方法,有就返回k,没有就返回v
sortedClassCount = sorted(classCount.iteritems(),
key=operator.itemgetter(), reverse=True) //定义函数key获取classcount索引为1的序列,即取classcount序列的每个元素第2个值排序
return sortedClassCount[][] //调用索引为0可得出分类类别
3,sort函数:
sorted函数包括四个参数即:
sorted(iterable,cmp,key,reverse)
1.iterable表示可迭代对象,包括list,str,tuple,dict,file,以及自定义
2.cmp表示自定的比较函数
3.key对比的关键词
4.reverse表示排列次序,true为降序排列,false为升序排列
在给出的knn算法中应用如下:
sortedclasscount=sorted(classcount.iteritems(),key=operator.itemgetter(1),reverse=ture)
因为之前的代码我们得到了一个字典classcount,其包括了标签与计数,即classcount=['a':5,'b':3]
由于classcount是字典,参见sorted第一个参数的定义,所以通过iteritems函数,转化为可迭代的对象。cmp这里没有定义,不解释。
key定义为对比用的关键词,即排序的参照,knn算法是选择k中出现频率最高的那一个分类,所以对应classcount索引为1的数字,则通过key=operator.itemgetter(1),定义函数key获取classcount索引为1的序列。
reverse=ture表示降序排列
这样即通过sorted函数将字典classcount按照计数器次数从大到小排列出来了,只要调用索引为0即可得出分类类别
K-近邻(KNN)算法的更多相关文章
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
- 机器学习-K近邻(KNN)算法详解
一.KNN算法描述 KNN(K Near Neighbor):找到k个最近的邻居,即每个样本都可以用它最接近的这k个邻居中所占数量最多的类别来代表.KNN算法属于有监督学习方式的分类算法,所谓K近 ...
- TensorFlow实现knn(k近邻)算法
首先先介绍一下knn的基本原理: KNN是通过计算不同特征值之间的距离进行分类. 整体的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于 ...
- k近邻(KNN)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合内容: 1.算法概述 K近邻算法是一种基本分类和回归方法:分类时,根据其K个最近邻的训练实例的类 ...
- K近邻分类算法实现 in Python
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...
- 查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响
代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen &qu ...
- k近邻 KNN
KNN是通过测量对象的不同特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20 ...
- 理解KNN算法中的k值-knn算法中的k到底指的是什么 ?
2019-11-09 20:11:26为方便自己收藏学习,转载博文from:https://blog.csdn.net/llhwx/article/details/102652798 knn算法是指对 ...
- 1.K近邻算法
(一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...
- 【转载】K-NN算法 学习总结
声明:作者:会心一击 出处:http://www.cnblogs.com/lijingchn/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接, ...
随机推荐
- 软件工程课堂作业(一)——随机产生四则运算题目(C++)
一.设计思想: 1.首先主函数只用来调用随机产生并输出运算题目函数,随机产生并输出这一部分功能用一个randout函数实现: 2.随机产生运算数这一功能,两个运算数可以用随机函数生成,并将它们控制在1 ...
- # ML学习小笔记—Classification
关于本课程的相关资料http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html 通过模型可以分类输入,此时根据分类结果的正确与否会有一个Loss函数.找 ...
- DAY5敏捷冲刺
站立式会议 工作安排 (1)服务器配置 对单词学习的记录储存 (2)数据库配置 单词学习记录+用户信息 燃尽图 燃尽图有误,已重新修改,先贴卡片的界面,后面补修改后燃尽图 代码提交记录
- Java之comparable接口
comparable 接口: 1. 问题:java.util.Collections 类中的方法 Collections.sort(List list) 是根据什么确定容器中对象的“大小”顺序的? 2 ...
- LintCode-112.删除排序链表中的重复元素
删除排序链表中的重复元素 给定一个排序链表,删除所有重复的元素每个元素只留下一个. 样例 给出 1->1->2->null,返回 1->2->null 给出 1-> ...
- iOS音频播放概述
在iOS系统中apple对音频播放需要的操作进行了封装并提供了不同层次的接口 下面对其中的中高层接口进行功能说明: Audio File Services:读写音频数据,可以完成播放流程中的第2步: ...
- JS中的数组转变成JSON格式字符串的方法
有一个JS数组,如: var arr = [["projectname1","projectnumber1"],["projectname2" ...
- 3dContactPointAnnotationTool开发日志(十六)
调了一上午才发现是把下面这个函数: private float DivideTriangle(int []triangle,out int []outTriangle,List<Vector ...
- 3dContactPointAnnotationTool开发日志(十二)
因为ReferenceImage的锚点是固定的左下角,缩放时controller面板也会跟着动.为了使Scale的时候controller上的slider不会远离指针,于是把controller固 ...
- 浅谈 Vue v-model指令的实现原理 - 如何利用v-model设计自定义的表单组件
原文请点击此链接 链接1 http://www.7zhang.com/index/cms/read/id/234515.html 链接2 http://blog.csdn.net/yangbing ...