欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld

技术交流QQ群:433250724,欢迎对算法、技术感兴趣的同学加入。

关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需。如果读者是初接触CNN,建议可以先看一看“Deep Learning(深度学习)学习笔记整理系列”中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助。

  1. Lenet,1986年
  2. Alexnet,2012年
  3. GoogleNet,2014年
  4. VGG,2014年
  5. Deep Residual Learning,2015年

Lenet

就从Lenet说起,可以看下caffe中lenet的配置文件(点我),可以试着理解每一层的大小,和各种参数。由两个卷积层,两个池化层,以及两个全连接层组成。 卷积都是5*5的模板,stride=1,池化都是MAX。下图是一个类似的结构,可以帮助理解层次结构(和caffe不完全一致,不过基本上差不多)

Alexnet

2012年,Imagenet比赛冠军的model——Alexnet [2](以第一作者alex命名)。caffe的model文件在这里。说实话,这个model的意义比后面那些model都大很多,首先它证明了CNN在复杂模型下的有效性,然后GPU实现使得训练在可接受的时间范围内得到结果,确实让CNN和GPU都大火了一把,顺便推动了有监督DL的发展。

模型结构见下图,别看只有寥寥八层(不算input层),但是它有60M以上的参数总量,事实上在参数量上比后面的网络都大。

这个图有点点特殊的地方是卷积部分都是画成上下两块,意思是说吧这一层计算出来的feature map分开,但是前一层用到的数据要看连接的虚线,如图中input层之后的第一层第二层之间的虚线是分开的,是说二层上面的128map是由一层上面的48map计算的,下面同理;而第三层前面的虚线是完全交叉的,就是说每一个192map都是由前面的128+128=256map同时计算得到的。

Alexnet有一个特殊的计算层,LRN层,做的事是对当前层的输出结果做平滑处理。下面是我画的示意图:

前后几层(对应位置的点)对中间这一层做一下平滑约束,计算方法是:

具体打开Alexnet的每一阶段(含一次卷积主要计算)来看[2][3]:

(1)con - relu - pooling - LRN

具体计算都在图里面写了,要注意的是input层是227*227,而不是paper里面的224*224,这里可以算一下,主要是227可以整除后面的conv1计算,224不整除。如果一定要用224可以通过自动补边实现,不过在input就补边感觉没有意义,补得也是0。

(2)conv - relu - pool - LRN

和上面基本一样,唯独需要注意的是group=2,这个属性强行把前面结果的feature map分开,卷积部分分成两部分做。

(3)conv - relu

(4)conv-relu

(5)conv - relu - pool

(6)fc - relu - dropout

这里有一层特殊的dropout层,在alexnet中是说在训练的以1/2概率使得隐藏层的某些neuron的输出为0,这样就丢到了一半节点的输出,BP的时候也不更新这些节点。

(7)

fc - relu - dropout



(8)fc - softmax

以上图借用[3],感谢。

GoogleNet

googlenet[4][5],14年比赛冠军的model,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构。(当然,它并没有证明浅的层次不能达到这样的效果)

这个model基本上构成部件和alexnet差不多,不过中间有好几个inception的结构:

是说一分四,然后做一些不同大小的卷积,之后再堆叠feature map。

计算量如下图,可以看到参数总量并不大,但是计算次数是非常大的。

VGG

VGG有很多个版本,也算是比较稳定和经典的model。它的特点也是连续conv多,计算量巨大(比前面几个都大很多)。具体的model结构可以参考[6],这里给一个简图。基本上组成构建就是前面alexnet用到的。

下面是几个model的具体结构,可以查阅,很容易看懂。

Deep Residual Learning

这个model是2015年底最新给出的,也是15年的imagenet比赛冠军。可以说是进一步将conv进行到底,其特殊之处在于设计了“bottleneck”形式的block(有跨越几层的直连)。最深的model采用的152层!!下面是一个34层的例子,更深的model见表格。



其实这个model构成上更加简单,连LRN这样的layer都没有了。

block的构成见下图:

总结

OK,到这里把常见的最新的几个model都介绍完了,可以看到,目前cnn model的设计思路基本上朝着深度的网络以及更多的卷积计算方向发展。虽然有点暴力,但是效果上确实是提升了。当然,我认为以后会出现更优秀的model,方向应该不是更深,而是简化。是时候动一动卷积计算的形式了。

参考资料

[1] http://blog.csdn.net/zouxy09/article/details/8781543/

[2] ImageNet Classification with Deep Convolutional Neural Networks

[3] http://blog.csdn.net/sunbaigui/article/details/39938097

[4] http://blog.csdn.net/csyhhb/article/details/45967291

[5] Going deeper with convolutions

[6] VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning的更多相关文章

  1. 卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning(转)

    参考:http://blog.csdn.net/xbinworld/article/details/45619685

  2. 深度学习之卷积神经网络CNN及tensorflow代码实例

    深度学习之卷积神经网络CNN及tensorflow代码实例 什么是卷积? 卷积的定义 从数学上讲,卷积就是一种运算,是我们学习高等数学之后,新接触的一种运算,因为涉及到积分.级数,所以看起来觉得很复杂 ...

  3. 深度学习之卷积神经网络CNN及tensorflow代码实现示例

    深度学习之卷积神经网络CNN及tensorflow代码实现示例 2017年05月01日 13:28:21 cxmscb 阅读数 151413更多 分类专栏: 机器学习 深度学习 机器学习   版权声明 ...

  4. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  5. 深度学习之卷积神经网络CNN

    转自:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连 ...

  6. 深度学习之卷积神经网络(CNN)的应用-验证码的生成与识别

    验证码的生成与识别 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10755361.html 目录 1.验证码的制 ...

  7. 深度学习之卷积神经网络(CNN)详解与代码实现(二)

    用Tensorflow实现卷积神经网络(CNN) 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10737065. ...

  8. 卷积神经网络 CNN 系列模型阐述

    http://www.sohu.com/a/134347664_642762 Lenet,1986年 https://github.com/BVLC/caffe/blob/master/example ...

  9. 第十三节,卷积神经网络之经典网络LeNet-5、AlexNet、VGG-16、ResNet(三)(后面附有一些网络英文翻译文章链接)

    一 实例探索 上一节我们介绍了卷积神经网络的基本构建,比如卷积层.池化层以及全连接层这些组件.事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络.最直 ...

随机推荐

  1. UVA.674 Coin Change (DP 完全背包)

    UVA.674 Coin Change (DP) 题意分析 有5种硬币, 面值分别为1.5.10.25.50,现在给出金额,问可以用多少种方式组成该面值. 每种硬币的数量是无限的.典型完全背包. 状态 ...

  2. XOR and Favorite Number (莫对算法)

    E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...

  3. java重写equals和hashCode方法

    一.重写equals方法 如果不重写equals,那么比较的将是对象的引用是否指向同一块内存地址,重写之后目的是为了比较两个对象的value值是否相等. 利用equals比较八大包装对象(如int,f ...

  4. MYSQL性能察看

    http://fengbin2005.iteye.com/blog/1580214 网上有很多的文章教怎么配置MySQL服务器,但考虑到服务器硬件配置的不同,具体应用的差别,那些文章的做法只能作为初步 ...

  5. maven中用yuicompressor和closure-compiler对js、css文件进行压缩

    转载自:http://matychen.iteye.com/blog/1477350 项目采用maven构建的时候,需要压缩js,css等,网上找了相关资料,自己综合了下-  直接放代码: <! ...

  6. [LeetCode] 12. Integer to Roman ☆☆

    Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 t ...

  7. android极光推送初步了解

    推送可以及时,主动的与用户发起交互 (1)继承jar包,照示例AndroidManifest.xml添加. (2)自定义MyApp继承自Application,在onCreate方法中调用JPushI ...

  8. Linux修改服务器ip

    Linux基础二(修改ip地址.修改网关.修改DNS服务器.重新启动网络配置)   网络的初始化 .ip地址的修改(临时生效) 使用ifconfig命令 ifconfig 网卡名 ip地址 netma ...

  9. Strand Sort

    Strand sort是思路是这样的,它首先需要一个空的数组用来存放最终的输出结果,给它取个名字叫"有序数组" 然后每次遍历待排数组,得到一个"子有序数组",然 ...

  10. unity ugui消息透传

    公司要做一个这东西. A是滑动区域,ScrollRect组件. B是各种选项. C是拾取到鼠标(或触点)的选项. D是拖放区域. 大概要求是这样. 因为B的条目很多,放在A里可以滑动查看.如果要选择一 ...