#Tarjan,SPFA,差分约束系统#BZOJ 2330 AcWing 368 银河
分析
首先这明显是一道差分约束题,但是无解的情况确实比较恶心,
考虑它的边权为0或1,无解当且仅当某个强连通分量内的边至少一条边边权为1,
那么用有向图的Tarjan缩点后跑SPFA就可以了
代码
#include <cstdio>
#include <cctype>
#include <stack>
#include <cstring>
#include <queue>
#define rr register
using namespace std;
const int N=100011; stack<int>stac; queue<int>q;
struct node{int y,w,next;}e[N*3],E[N*3];
int dfn[N],low[N],v[N],dis[N],hs[N],col[N];
int siz[N],as[N],cnt,tot,et,Et,n,m; long long ans;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void add(int x,int y,int w){E[++Et]=(node){y,w,hs[x]},hs[x]=Et;}
inline signed min(int a,int b){return a<b?a:b;}
inline void tarjan(int x){
dfn[x]=low[x]=++tot,
stac.push(x),v[x]=1;
for (rr int i=hs[x];i;i=E[i].next)
if (!dfn[E[i].y]){
tarjan(E[i].y);
low[x]=min(low[x],low[E[i].y]);
}else if (v[E[i].y])
low[x]=min(low[x],dfn[E[i].y]);
if (dfn[x]==low[x]){
rr int y; ++cnt;
do{
y=stac.top(); stac.pop();
col[y]=cnt,v[y]=0,++siz[cnt];
}while (x^y);
}
}
signed main(){
n=iut()+1; m=iut();
for (rr int i=1;i<n;++i) add(n,i,1);
for (rr int i=1;i<=m;++i){
rr int z=iut(),x=iut(),y=iut();
switch (z){
case 1:{
add(x,y,0),add(y,x,0);
break;
}
case 2:{
add(x,y,1);
break;
}
case 3:{
add(y,x,0);
break;
}
case 4:{
add(y,x,1);
break;
}
case 5:{
add(x,y,0);
break;
}
}
}
for (rr int i=1;i<=n;++i)
if (!dfn[i]) tarjan(i);
for (rr int i=1;i<=n;++i)
for (rr int j=hs[i];j;j=E[j].next)
if (col[i]^col[E[j].y])
e[++et]=(node){col[E[j].y],E[j].w,as[col[i]]},as[col[i]]=et;
else if (E[j].w) return !printf("-1");
memset(dis,0xcf,sizeof(dis));
q.push(col[n]),v[col[n]]=1,dis[col[n]]=0;
while (!q.empty()){
rr int x=q.front(); q.pop();
for (rr int i=as[x];i;i=e[i].next)
if (dis[e[i].y]<dis[x]+e[i].w){
dis[e[i].y]=dis[x]+e[i].w;
if (!v[e[i].y]) v[e[i].y]=1,q.push(e[i].y);
}
v[x]=0;
}
for (rr int i=1;i<=cnt;++i) ans+=siz[i]*dis[i];
return !printf("%lld",ans);
}
#Tarjan,SPFA,差分约束系统#BZOJ 2330 AcWing 368 银河的更多相关文章
- spfa+差分约束系统(C - House Man HDU - 3440 )+对差分约束系统的初步理解
题目链接:https://cn.vjudge.net/contest/276233#problem/C 题目大意:有n层楼,给你每个楼的高度,和这个人单次的最大跳跃距离m,两个楼之间的距离最小是1,但 ...
- spfa+差分约束系统(D - POJ - 1201 && E - POJ - 1364&&G - POJ - 1)+建边的注意事项+超级源点的建立
题目链接:https://cn.vjudge.net/contest/276233#problem/D 具体大意: 给出n个闭合的整数区间[ai,bi]和n个整数c1,-,cn. 编写一个程序: 从标 ...
- BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA
最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...
- BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5395 Solved: 1750[Submit][Status ...
- bzoj 2330 [SCOI2011]糖果(差分约束系统)
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3574 Solved: 1077[Submit][Status ...
- BZOJ 2330 糖果 差分约束求最小值
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2330 题目大意: 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果 ...
- 差分约束系统 + spfa(A - Layout POJ - 3169)
题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...
- 【差分约束系统/SPFA】POJ3169-Layout
[题目大意] n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值. [思路] 由题意可以得到以下不等式d[AL]+DL≥d[BL]:d[BD ...
- 【差分约束系统】【spfa】UVALive - 4885 - Task
差分约束系统讲解看这里:http://blog.csdn.net/xuezhongfenfei/article/details/8685313 模板题,不多说.要注意的一点是!!!对于带有within ...
- 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa
原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...
随机推荐
- 文心一言 VS 讯飞星火 VS chatgpt (201)-- 算法导论15.2 6题
六.用go语言,证明:对 n 个元素的表达式进行完全括号化,恰好需要 n-1 对括号. 文心一言,代码正常运行: 在Go语言中,证明对n个元素的表达式进行完全括号化恰好需要n-1对括号,可以通过数学归 ...
- 项目实战:Qt+OSG三维2D文字实时效果查看工具
需求 OSG三维中2D文字的基本属性较多,方便实时查看效果,并出对应文本代码. Demo 工具下载地址 CSDN免积分下载地址:https://download.csdn.net ...
- 字符串,format格式化及列表的相关进阶操作---day07
1.字符串相关操作 (1)字符串的拼接 (2)字符串的重复 (3)字符串跨行拼接 (4)字符串的索引 (5)字符串的切片:[开始索引:结束索引:步长] 2.字符串的格式化format (1)顺序传参 ...
- 【应用服务 App Service】App Service For Windows 如何挂载Storage Account File Share 示例
问题描述 很早之前,介绍了在 App Service for Linux中挂载 Storage Account共享文件,当时Windows无法实现这个功能.而现在,App Service For Wi ...
- 揭秘可视化图探索工具 NebulaGraph Explore 是如何实现图计算的
前言 在可视化图探索工具 NebulaGraph Explorer 3.1.0 版本中加入了图计算工作流功能,针对 NebulaGraph 提供了图计算的能力,同时可以利用工作流的 nGQL 运行能力 ...
- vscode+gitee+picgo实现稳定图床
目录: 目录 目录: 1. 为什么使用vscode+gitee+picgo实现完美图床 2. 安装VSCode 2.1 安装VSCode软件及相关插件 3. 安装picgo 4. 准备Gitee图床 ...
- Django进阶之路由层和视图层
Django的路由系统 [1]什么是URL配置(URLconf) URL调度器 | Django 文档 | Django (djangoproject.com) URL配置(URLconf)就像Dja ...
- 清除 gitee.io 页面强缓存 Chrome浏览器 F12 找到页面 右键 Clear browser cache
清除 gitee.io 页面强缓存 Chrome浏览器 F12 找到页面 右键 Clear browser cache
- dangle = dance + toggle - dan 向上跳 gle 摆动
dangle = dance + toggle - dan 向上跳 gle 摆动 dangle 英 [ˈdæŋɡl] 美 [ˈdæŋɡl] v.悬垂;悬挂;悬荡;悬摆;提着(某物,任其自然下垂或摆动) ...
- DiagnosticSource DiagnosticListener 无侵入式分布式跟踪
ASP.NET Core 中的框架中发出大量诊断事件,包括当前请求进入请求完成事件,HttpClient发出收到与响应,EFCore查询等等. 我们可以利用DiagnosticListener来选择性 ...