#Tarjan,SPFA,差分约束系统#BZOJ 2330 AcWing 368 银河
分析
首先这明显是一道差分约束题,但是无解的情况确实比较恶心,
考虑它的边权为0或1,无解当且仅当某个强连通分量内的边至少一条边边权为1,
那么用有向图的Tarjan缩点后跑SPFA就可以了
代码
#include <cstdio>
#include <cctype>
#include <stack>
#include <cstring>
#include <queue>
#define rr register
using namespace std;
const int N=100011; stack<int>stac; queue<int>q;
struct node{int y,w,next;}e[N*3],E[N*3];
int dfn[N],low[N],v[N],dis[N],hs[N],col[N];
int siz[N],as[N],cnt,tot,et,Et,n,m; long long ans;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void add(int x,int y,int w){E[++Et]=(node){y,w,hs[x]},hs[x]=Et;}
inline signed min(int a,int b){return a<b?a:b;}
inline void tarjan(int x){
dfn[x]=low[x]=++tot,
stac.push(x),v[x]=1;
for (rr int i=hs[x];i;i=E[i].next)
if (!dfn[E[i].y]){
tarjan(E[i].y);
low[x]=min(low[x],low[E[i].y]);
}else if (v[E[i].y])
low[x]=min(low[x],dfn[E[i].y]);
if (dfn[x]==low[x]){
rr int y; ++cnt;
do{
y=stac.top(); stac.pop();
col[y]=cnt,v[y]=0,++siz[cnt];
}while (x^y);
}
}
signed main(){
n=iut()+1; m=iut();
for (rr int i=1;i<n;++i) add(n,i,1);
for (rr int i=1;i<=m;++i){
rr int z=iut(),x=iut(),y=iut();
switch (z){
case 1:{
add(x,y,0),add(y,x,0);
break;
}
case 2:{
add(x,y,1);
break;
}
case 3:{
add(y,x,0);
break;
}
case 4:{
add(y,x,1);
break;
}
case 5:{
add(x,y,0);
break;
}
}
}
for (rr int i=1;i<=n;++i)
if (!dfn[i]) tarjan(i);
for (rr int i=1;i<=n;++i)
for (rr int j=hs[i];j;j=E[j].next)
if (col[i]^col[E[j].y])
e[++et]=(node){col[E[j].y],E[j].w,as[col[i]]},as[col[i]]=et;
else if (E[j].w) return !printf("-1");
memset(dis,0xcf,sizeof(dis));
q.push(col[n]),v[col[n]]=1,dis[col[n]]=0;
while (!q.empty()){
rr int x=q.front(); q.pop();
for (rr int i=as[x];i;i=e[i].next)
if (dis[e[i].y]<dis[x]+e[i].w){
dis[e[i].y]=dis[x]+e[i].w;
if (!v[e[i].y]) v[e[i].y]=1,q.push(e[i].y);
}
v[x]=0;
}
for (rr int i=1;i<=cnt;++i) ans+=siz[i]*dis[i];
return !printf("%lld",ans);
}
#Tarjan,SPFA,差分约束系统#BZOJ 2330 AcWing 368 银河的更多相关文章
- spfa+差分约束系统(C - House Man HDU - 3440 )+对差分约束系统的初步理解
题目链接:https://cn.vjudge.net/contest/276233#problem/C 题目大意:有n层楼,给你每个楼的高度,和这个人单次的最大跳跃距离m,两个楼之间的距离最小是1,但 ...
- spfa+差分约束系统(D - POJ - 1201 && E - POJ - 1364&&G - POJ - 1)+建边的注意事项+超级源点的建立
题目链接:https://cn.vjudge.net/contest/276233#problem/D 具体大意: 给出n个闭合的整数区间[ai,bi]和n个整数c1,-,cn. 编写一个程序: 从标 ...
- BZOJ 2330 [SCOI2011]糖果 ——差分约束系统 SPFA
最小值求最长路. 最大值求最短路. 发现每个约束条件可以转化为一条边,表示一个点到另外一个点至少要加上一个定值. 限定了每一个值得取值下界,然后最长路求出答案即可. 差分约束系统,感觉上更像是两个变量 ...
- BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5395 Solved: 1750[Submit][Status ...
- bzoj 2330 [SCOI2011]糖果(差分约束系统)
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3574 Solved: 1077[Submit][Status ...
- BZOJ 2330 糖果 差分约束求最小值
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2330 题目大意: 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果 ...
- 差分约束系统 + spfa(A - Layout POJ - 3169)
题目链接:https://cn.vjudge.net/contest/276233#problem/A 差分约束系统,假设当前有三个不等式 x- y <=t1 y-z<=t2 x-z< ...
- 【差分约束系统/SPFA】POJ3169-Layout
[题目大意] n头牛从小到大排,它们之间某些距离不能大于一个值,某些距离不能小于一个值,求第一头牛和第N头牛之间距离的最大值. [思路] 由题意可以得到以下不等式d[AL]+DL≥d[BL]:d[BD ...
- 【差分约束系统】【spfa】UVALive - 4885 - Task
差分约束系统讲解看这里:http://blog.csdn.net/xuezhongfenfei/article/details/8685313 模板题,不多说.要注意的一点是!!!对于带有within ...
- 【bzoj3436】小K的农场 差分约束系统+最长路-Spfa
原文地址:http://www.cnblogs.com/GXZlegend/p/6801470.html 题目描述 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总 ...
随机推荐
- 无依赖单机尝鲜 Nebula Exchange 的 SST 导入
本文尝试分享下以最小方式(单机.容器化 Spark.Hadoop.Nebula Graph),快速趟一下 Nebula Exchange 中 SST 写入方式的步骤.本文适用于 v2.5 以上版本的 ...
- JavaScript 最新动态:2024 年新功能
前言 随着 Web 技术的日新月异,JavaScript 也在不断地吸收新的特性和技术,以满足日益复杂和多样化的开发需求.在 2024 年,JavaScript 迎来了一系列令人瞩目的新功能,这些功能 ...
- Python面向对象之派生和组合
[一]什么是派生 派生是指,子类继承父类,派生出自己的属性与方法,并且重用父类的属性与方法 [二]派生的方法 子类可以派生出自己新的属性,在进行属性查找时,子类中的属性名会优先于父类被查找 例如每个老 ...
- cache 本地&分布式(-redis) & JSON对象转换
本地缓存 最简单的cache, 做一个map就行 private final Map<String,List<User>> cache=new HashMap<>( ...
- vscode 文件上传快捷键 shift+alt+s (ftp专用)插件用的 ftp-sync
vscode 文件上传快捷键 shift+alt+s (ftp专用)插件用的 ftp-sync { "key": "shift+alt+s", "co ...
- vscode 当做记事本,用任务 tasks 自动提交git - ctrl shift B
vscode 当做记事本,用任务 tasks 自动提交git - ctrl shift B 起因 开始用的joplin 本地记事本挺好,唯一缺点不能同步. 用了一下,发现markdown是两栏的,变成 ...
- function 的入参 如果是指针的话,如果你用的好的话,会颠覆三观啊 这里就是指对象,数组不用考虑 // 夏娃的苹果
function 的入参 如果是指针的话,如果你用的好的话,会颠覆三观啊 这里就是指对象,数组不用考虑 这就是一颗 夏娃的苹果
- 使用Deployment和Service实现简单的灰度发布
在Kubernetes中,使用单个Service和多个Deployment来实现灰度发布的一种常见方法是利用标签(Labels)和选择器(Selectors)来控制哪些Pods接收来自Service的 ...
- [SCOI 2009] 迷路 (矩阵快速幂)
[SCOI 2009]迷路 传送门 问题描述 Windy 在有向图中迷路了. 该有向图有 \({N}\) 个节点,Windy 从节点 \({1}\) 出发,他必须恰好在 \({T}\) 时刻到达节点 ...
- SVN迁移到Git,并同步提交记录
原文:SVN迁移到Git,并同步提交记录 - Stars-One的杂货小窝 公司的旧项目存放在SVN,现准备迁移到Git,研究了下,简单记录一下从SVN迁移到Git的操作 步骤 1.创建一个空白文件夹 ...