Hive是大数据领域常用的组件之一,主要是大数据离线数仓的运算,关于Hive的性能调优在日常工作和面试中是经常涉及的的一个点,因此掌握一些Hive调优是必不可少的一项技能。影响Hive效率的主要有数据倾斜、数据冗余、job的IO以及不同底层引擎配置情况和Hive本身参数和HiveSQL的执行等因素。本文主要结合实际业务情况,在使用Spark作为底层引擎时,通过一些常见的配置参数对报错任务进行调整优化。

下面从两个方面对复杂任务的优化:

Spark资源参数优化

主要针对Spark运行过程中各个使用资源的地方,通过调节资源相关参数,来优化资源使用的效率,从而提升Spark作业的执行性能。例如:num-executors、executor-memory、executor-cores等。

Shuffle相关参数调优

主要针对spark运行过程中的shuffle,通过调节参数,提高shuffle的执行效率,从而提升spark作业的执行性能。例如:spark.shuffle.memoryFraction,spark.sql.shuffle.partitions等。

案例1

复杂任务执行失败,大约有400行sql,较为复杂,join聚合函数操作较多。手动重试任务后仍然报错。

查看任务报错日志

分析关键信息

Exception in thread "broadcast-exchange-0" java.lang.OutOfMemoryError: Not enough memory to build and broadcast the table to all worker nodes. As a workaround, you can either disable broadcast by setting
spark.sql.autoBroadcastJoinThreshold to -1 or increase the spark driver memory by setting spark.driver.memory to a higher value

得出结论

当前所有的工作节点均没有足够的内存去build并且广播表,建议处理方法:将广播置为无效或者增加spark的driver memory。

优化效果

经过对比测试验证,在同时调大excutor内存和driver内存后,任务可以成功运行。单独调大driver或excutor内存,任务运行依然失败。

Q1:什么情况下应将广播设置为无效?

根据官网文档对该参数的描述可知:其默认值为10M,意味着执行join时,这张表字节大小在10M内可以自动广播到所有工作节点。将表广播到其他工作节点,会减少shuffle的过程,提升效率。如果在内存足够并且数据量过多的情况下,可以将适当提高该参数值作为一种优化手段。如果在表都很大的情况下,建议将自动广播参数置为无效。将参数值设置为-1时会禁用自动广播。

案例2

某个任务已经运行了40多个小时,自动重试了3次,一直处于阻塞状态。

查看异常任务SQL

发现任务中由10多个SQL语句构成,一个语句大概有200+行,union all、join、sum操作较多。

查看任务报错日志

分析关键信息

org.apache.spark.shuffle.MetadataFetchFailedException:
Missing an output location for shuffle 433

得出结论

一般任务有大量shuffle操作的时候,我们可以从shuffle数据量及shuffle分区数的角度对任务进行优化调整。

优化效果

只采取调大executor内存的方式进行优化,任务可以运行成功,但任务执行耗时仍然需20+分钟,执行效率与优化前相比无明显变化。原因在于任务执行中产生了较多的task,此时可以通过调整分区参数进行深入优化。分区参数spark.sql.shuffle.partitions是Spark SQL专用的设置,将该参数的值由200(默认值)调小为50,任务运行成功,执行耗时减少50%,约10分钟;继续将该参数调小为10,任务运行成功,执行耗时减少70%,约6分钟,优化完成。

Q2:spark.default.parallelism参数与

spark.sql.shuffle.partitions参数有什么区别?

虽然这两个参数较为相似,但default.parallelism只在处理RDD时才会起作用,对Spark SQL无效。其值设置为【num- executors * executor-cores】的2~3倍较为合理。可以参考官网的定义说明:

延伸拓展

1.shuffle分为shuffle write和shuffle read两部分。

2.shuffle write的分区数由上一阶段的RDD分区数控制,shuffle read的分区数则是由Spark提供的一些参数控制。

3.shuffle write可以简单理解为类似于saveAsLocalDiskFile的操作,将计算的中间结果按某种规则临时放到各个executor所在的本地磁盘上。

4.shuffle read时数据的分区数则是由spark提供的一些参数控制。如果这个参数值设置的很小,同时shuffle read的量很大,那么将会导致一个task需要处理的数据非常大,容易引发JVM crash。如果这个参数值设置的很大,可能会导致task的数量过多,任务执行速度过慢。

job和stage以及task的关系如下图所示,job的划分是action操作造成的,Stage是job通过依赖关系划分出来的,一个Stage对应一个TaskSet,一个Task对应一个rdd分区。同时大量使用shuffle操作也会使task数量变多。

本次优化主要是结合实际优化案例,对底层引擎spark的参数进行调优。如何通过优化提升任务执行效率?如何利用监控分析将被动运维转为主动运维?请关注后续Hive性能优化及监控方面的实践连载。

技本功|Hive优化之Spark执行引擎参数调优(二)的更多相关文章

  1. hive中使用spark执行引擎的常用参数

    set hive.execution.engine=spark;set hive.exec.parallel=true;set hive.exec.parallel.thread.number=8;s ...

  2. 大数据:Hive常用参数调优

    1.limit限制调整 一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果. 有一个配置属性可以开启,避免这种情况---对数据源进行抽样 hive.limit.optimize.e ...

  3. 1,Spark参数调优

    Spark调优 目录 Spark调优 一.代码规范 1.1 避免创建重复RDD 1.2 尽量复用同一个RDD 1.3 多次使用的RDD要持久化 1.4 使用高性能算子 1.5 好习惯 二.参数调优 资 ...

  4. Spark Shuffle原理、Shuffle操作问题解决和参数调优

    摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...

  5. 【Spark篇】---Spark中内存管理和Shuffle参数调优

    一.前述 Spark内存管理 Spark执行应用程序时,Spark集群会启动Driver和Executor两种JVM进程,Driver负责创建SparkContext上下文,提交任务,task的分发等 ...

  6. spark submit参数调优

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...

  7. 【Spark调优】Shuffle原理理解与参数调优

    [生产实践经验] 生产实践中的切身体会是:影响Spark性能的大BOSS就是shuffle,抓住并解决shuffle这个主要原因,事半功倍. [Shuffle原理学习笔记] 1.未经优化的HashSh ...

  8. spark 资源参数调优

    资源参数调优 了解完了Spark作业运行的基本原理之后,对资源相关的参数就容易理解了.所谓的Spark资源参数调优,其实主要就是对Spark运行过程中各个使用资源的地方,通过调节各种参数,来优化资源使 ...

  9. Spark面试题(八)——Spark的Shuffle配置调优

    Spark系列面试题 Spark面试题(一) Spark面试题(二) Spark面试题(三) Spark面试题(四) Spark面试题(五)--数据倾斜调优 Spark面试题(六)--Spark资源调 ...

  10. spark参数调优

    摘要 1.num-executors 2.executor-memory 3.executor-cores 4.driver-memory 5.spark.default.parallelism 6. ...

随机推荐

  1. iOS16新特性:实时活动-在锁屏界面实时更新APP消息

    简介 之前在 <iOS16新特性:灵动岛适配开发与到家业务场景结合的探索实践> 里介绍了iOS16新的特性:实时更新(Live Activity)中灵动岛的适配流程,但其实除了灵动岛的展示 ...

  2. 从 5s 到 0.5s!CompletableFuture 异步任务优化技巧,确实优雅!

    一个接口可能需要调用 N 个其他服务的接口,这在项目开发中还是挺常见的.举个例子:用户请求获取订单信息,可能需要调用用户信息.商品详情.物流信息.商品推荐等接口,最后再汇总数据统一返回. 如果是串行( ...

  3. lvm格式化挂载分区

    1.从物理磁盘创建lvm分区 物理磁盘 /dev/sdb 20G 2.使用fdisk工具创建lvm分区 3.修改默认的分区类型 4.查看新建的分区 5.创建物理卷pv 6.创建逻辑卷组vg,并查看详情 ...

  4. 【c#版本Openfeign】Net8 自带OpenFeign实现远程接口调用

    引言 相信巨硬,我们便一直硬.Net版本到现在已经出了7了,8也已经在预览版了,相信在一个半月就会正式发布,其中也有很多拭目以待的新功能了,不仅仅有Apm和Tap的结合,TaskToAscynResu ...

  5. golang Context应用举例

    Context本质 golang标准库里Context实际上是一个接口(即一种编程规范. 一种约定). type Context interface { Deadline() (deadline ti ...

  6. wps 设置 word文档不可被修改,指定区域可以修改

    wps 设置 word文档不可被修改,指定区域可以修改 2021年03月03日09:38:10

  7. 2020/4/26 2-sat 学习笔记

    2-sat 吧.... 其实我jio得它一点都不难 嗯 2-sat是个啥东西呢?其实就是有很多人,他们每个人有两个要求,一个要求可以说是要求一个数为0或1而对于第i个数,我们可以选择为0或为1最终询问 ...

  8. Emit 实体绑定源码开源,支持类以及匿名类绑定(原创)

    动态实体绑定 主要有以下两种 1.表达式树构建委托 2.Emit构建委托 根据我的经验 Emit 代码量可以更少可以很好实现代码复用 Emit实践开源项目地址跳转 https://www.cnblog ...

  9. 【羚珑AI智绘营】分分钟带你拿捏SD中的色彩控制

    导言 颜色控制一直是AIGC的难点,prompt会污染.img2img太随机- 今天带来利用controlnet,实现对画面颜色的有效控制.都说AIGC是抽卡,但对把它作为工具而非玩具的设计师,必须掌 ...

  10. 洛谷P1144

    最短路计数 题目描述 给出一个 \(N\) 个顶点 \(M\) 条边的无向无权图,顶点编号为 \(1\sim N\).问从顶点 \(1\) 开始,到其他每个点的最短路有几条. 输入格式 第一行包含 \ ...