从 Helm 到 Operator:Kubernetes应用管理的进化
Helm 的作用
在开始前需要先对 kubernetes Operator 有个简单的认识。
以为我们在编写部署一些简单 Deployment 的时候只需要自己编写一个 yaml 文件然后 kubectl apply 即可。
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: k8s-combat
name: k8s-combat
spec:
replicas: 1
selector:
matchLabels:
app: k8s-combat
template:
metadata:
labels:
app: k8s-combat
spec:
containers:
- name: k8s-combat
image: crossoverjie/k8s-combat:v1
imagePullPolicy: Always
resources:
limits:
cpu: "1"
memory: 300Mi
requests:
cpu: "0.1"
memory: 30Mi
kubectl apply -f deployment.yaml
这对于一些并不复杂的项目来说完全够用了,但组件一多就比较麻烦了。

这里以 Apache Pulsar 为例:它的核心组件有:
- Broker
- Proxy
- Zookeeper
- Bookkeeper
- Prometheus(可选)
- Grafana(可选)
等组件,每个组件的启动还有这依赖关系。
必须需要等 Zookeeper 和 Bookkeeper 启动之后才能将流量放进来。
此时如何还继续使用 yaml 文件一个个部署就会非常繁琐,好在社区有提供 Helm 一键安装程序,使用它我们只需要在一个同意的 yaml 里简单的配置一些组件,配置就可以由 helm 来部署整个复杂的 Pulsar 系统。
components:
# zookeeper
zookeeper: true
# bookkeeper
bookkeeper: true
# bookkeeper - autorecovery
autorecovery: true
# broker
broker: true
# functions
functions: false
# proxy
proxy: true
# toolset
toolset: true
# pulsar manager
pulsar_manager: false
monitoring:
# monitoring - prometheus
prometheus: true
# monitoring - grafana
grafana: true
# monitoring - node_exporter
node_exporter: true
# alerting - alert-manager
alert_manager: false
比如在 helm 的 yaml 中我们可以选择使用哪些 components,以及是否启用监控组件。
最后直接使用这个文件进行安装:
helm install pulsar apache/pulsar \
--values charts/pulsar/values.yaml \
--set namespace=pulsar \
--set initialize=true
它就会自动生成各个组件的 yaml 文件,然后统一执行。
所以 helm 的本质上和 kubectl apply yaml 一样的,只是我们在定义 value.yaml 时帮我们处理了许多不需要用户低频修改的参数。
我们可以使用 helm 将要执行的 yaml 输出后人工审核
helm install pulsar apache/pulsar --dry-run --debug > debug.yaml
Operator 是什么
Helm 的痛点
Helm 虽然可以帮我们部署或者升级一个大型应用,但他却没法帮我们运维这个应用。
举个例子:比如我希望当 Pulsar Broker 的流量或者内存达到某个阈值后就指定扩容 Broker,闲时再自动回收。
或者某个 Bookkeeper 的磁盘使用率达到阈值后可以自动扩容磁盘,这些仅仅使用 Helm 时都是无法实现的。
以上这些需求我们目前也是通过监控系统发出报警,然后再由人工处理。
其中最大的痛点就是进行升级:
- 升级ZK
- 关闭auto recovery
- 升级Bookkeeper
- 升级Broker
- 升级Proxy
- 开启auto recovery
因为每次升级是有先后顺序的,需要依次观察每个组件运行是否正常才能往后操作。
如果有 Operator 理性情况下下我们只需要更新一下镜像版本,它就可以自动执行以上的所有步骤最后将集群升级完毕。
所以相对于 Helm 来说 Operator 是可以站在一个更高的视角俯视整个应用系统,它能发现系统哪个地方需要它从而直接修复。
CRD(Custom Resource Definitions)
而提到 Operator 那就不得不提到 CRD(Custom Resource Definitions)翻译过来就是自定义资源。
这是 kubernetes 提供的一个 API 扩展机制,类似于内置的 Deployment/StatefulSet/Services 资源,CRD 是一种自定义的资源。
这里以我们常用的 prometheus-operator 和 VictoriaMetrics-operator 为例:
Prometheus:
Prometheus:用于定义 Prometheus 的 DeploymentAlertmanager:用于定义AlertmanagerScrapeConfig:用于定会抓取规则
apiVersion: monitoring.coreos.com/v1alpha1
kind: ScrapeConfig
metadata:
name: static-config
namespace: my-namespace
labels:
prometheus: system-monitoring-prometheus
spec:
staticConfigs:
- labels:
job: prometheus
targets:
- prometheus.demo.do.prometheus.io:9090
使用时的一个很大区别就是资源的 kind: ScrapeConfig 为自定义的类型。
VictoriaMetrics 的 CRD:
- VMPodScrape:Pod 的抓取规则
- VMCluster:配置 VM 集群
- VMAlert:配置 VM 的告警规则
- 等等
# vmcluster.yaml
apiVersion: operator.victoriametrics.com/v1beta1
kind: VMCluster
metadata:
name: demo
spec:
retentionPeriod: "1"
replicationFactor: 2
vmstorage:
replicaCount: 2
storageDataPath: "/vm-data"
storage:
volumeClaimTemplate:
spec:
resources:
requests:
storage: "10Gi"
resources:
limits:
cpu: "1"
memory: "1Gi"
vmselect:
replicaCount: 2
cacheMountPath: "/select-cache"
storage:
volumeClaimTemplate:
spec:
resources:
requests:
storage: "1Gi"
resources:
limits:
cpu: "1"
memory: "1Gi"
requests:
cpu: "0.5"
memory: "500Mi"
vminsert:
replicaCount: 2
以上是用于创建一个 VM 集群的 CRD 资源,应用之后就会自动创建一个集群。
Operator 原理

Operator 通常是运行在 kubernetes API server 的 webhook 之上,简单来说就是在一些内置资源的关键节点 API-server 会调用我们注册的一个 webhook,在这个 webhook 中我们根据我们的 CRD 做一些自定义的操作。
理论上我们可以使用任何语言都可以写 Operator,只需要能处理 api-server 的回调即可。
只是 Go 语言有很多成熟的工具,比如常用的 kubebuilder 和 operator-sdk.
他们内置了许多命令行工具,可以帮我们节省需要工作量。
这里以 operator-sdk 为例:
$ operator-sdk create webhook --group cache --version v1alpha1 --kind Memcached --defaulting --programmatic-validation
会直接帮我们创建好一个标准的 operator 项目:
├── Dockerfile
├── Makefile
├── PROJECT
├── api
│ └── v1alpha1
│ ├── memcached_webhook.go
│ ├── webhook_suite_test.go
├── config
│ ├── certmanager
│ │ ├── certificate.yaml
│ │ ├── kustomization.yaml
│ │ └── kustomizeconfig.yaml
│ ├── default
│ │ ├── manager_webhook_patch.yaml
│ │ └── webhookcainjection_patch.yaml
│ └── webhook
│ ├── kustomization.yaml
│ ├── kustomizeconfig.yaml
│ └── service.yaml
├── go.mod
├── go.sum
└── main.go
其中 Makefile 中包含了开发过程中常用的工具链(包括根据声明的结构体自动生成 CRD 资源、部署k8s 环境测试等等)、Dockerfile 等等。
这样我们就只需要专注于开发业务逻辑即可。
因为我前段时间给 https://github.com/open-telemetry/opentelemetry-operator 贡献过两个 feature,所以就以这个 Operator 为例:
它有一个 CRD: kind: Instrumentation,在这个 CRD 中可以将 OpenTelemetry 的 agent 注入到应用中。
apiVersion: opentelemetry.io/v1alpha1
kind: Instrumentation
metadata:
name: instrumentation-test-order
namespace: test
spec:
env:
- name: OTEL_SERVICE_NAME
value: order
selector:
matchLabels:
app: order
java:
image: autoinstrumentation-java:2.4.0-release
extensions:
- image: autoinstrumentation-java:2.4.0-release
dir: /extensions
env:
- name: OTEL_RESOURCE_ATTRIBUTES
value: service.name=order
- name: OTEL_INSTRUMENTATION_MESSAGING_EXPERIMENTAL_RECEIVE_TELEMETRY_ENABLED
value: "true"
- name: OTEL_TRACES_EXPORTER
value: otlp
- name: OTEL_METRICS_EXPORTER
value: otlp
- name: OTEL_LOGS_EXPORTER
value: none
- name: OTEL_EXPORTER_OTLP_ENDPOINT
value: http://open-telemetry-opentelemetry-collector.otel.svc.cluster.local:4317
- name: OTEL_EXPORTER_OTLP_COMPRESSION
value: gzip
- name: OTEL_EXPERIMENTAL_EXPORTER_OTLP_RETRY_ENABLED
value: "true"
它的运行规则是当我们的 Pod 在启动过程中会判断 Pod 的注解中是否开启了注入 OpenTelemetry 的配置。
如果开启则会将我们在 CRD 中自定义的镜像里的 javaagent 复制到业务容器中,同时会将下面的那些环境变量也一起加入的业务容器中。
要达到这样的效果就需要我们注册一个回调 endpoint。
mgr.GetWebhookServer().Register("/mutate-v1-pod", &webhook.Admission{
Handler: podmutation.NewWebhookHandler(cfg, ctrl.Log.WithName("pod-webhook"), decoder, mgr.GetClient(),
[]podmutation.PodMutator{
sidecar.NewMutator(logger, cfg, mgr.GetClient()),
instrumentation.NewMutator(logger, mgr.GetClient(), mgr.GetEventRecorderFor("opentelemetry-operator"), cfg),
}),})
当 Pod 创建或有新的变更请求时就会回调我们的接口。
func (pm *instPodMutator) Mutate(ctx context.Context, ns corev1.Namespace, pod corev1.Pod) (corev1.Pod, error) {
logger := pm.Logger.WithValues("namespace", pod.Namespace, "name", pod.Name)
}
在这个接口中我们就可以拿到 Pod 的信息,然后再获取 CRD Instrumentation 做我们的业务逻辑。
var otelInsts v1alpha1.InstrumentationList
if err := pm.Client.List(ctx, &otelInsts, client.InNamespace(ns.Name)); err != nil {
return nil, err
}
// 从 CRD 中将数据复制到业务容器中。
pod.Spec.InitContainers = append(pod.Spec.InitContainers, corev1.Container{
Name: javaInitContainerName,
Image: javaSpec.Image,
Command: []string{"cp", "/javaagent.jar", javaInstrMountPath + "/javaagent.jar"},
Resources: javaSpec.Resources,
VolumeMounts: []corev1.VolumeMount{{
Name: javaVolumeName,
MountPath: javaInstrMountPath,
}},
})
for i, extension := range javaSpec.Extensions {
pod.Spec.InitContainers = append(pod.Spec.InitContainers, corev1.Container{
Name: initContainerName + fmt.Sprintf("-extension-%d", i),
Image: extension.Image,
Command: []string{"cp", "-r", extension.Dir + "/.", javaInstrMountPath + "/extensions"},
Resources: javaSpec.Resources,
VolumeMounts: []corev1.VolumeMount{{
Name: javaVolumeName,
MountPath: javaInstrMountPath,
}},
})
}
不过需要注意的是想要在测试环境中测试 operator 是需要安装一个 cert-manage,这样
webhook才能正常的回调。

要使得 CRD 生效,我们还得先将 CRD 安装进 kubernetes 集群中,不过这些 operator-sdk 这类根据已经考虑周到了。
我们只需要定义好 CRD 的结构体:

然后使用 Makefile 中的工具 make bundle 就会自动将结构体转换为 CRD。
参考链接:
- https://github.com/VictoriaMetrics/operator
- https://github.com/prometheus-operator/prometheus-operator
从 Helm 到 Operator:Kubernetes应用管理的进化的更多相关文章
- 基于Helm和Operator的K8S应用管理的分享
一.为啥要用helm 对于一些微服务架构来说,会有不同的服务在上面运行,你可能要管理诸如deployment.service.有状态的Statefulset.权限的控制等等.你会发现,部署应用后还会有 ...
- 基于Helm和Operator的K8S应用管理
https://blog.csdn.net/RancherLabs/article/details/79483013 大家好,今天我们分享的内容是基于Helm和Operator的K8S应用管理. 我们 ...
- Helm - Kubernetes包管理专家
What is Helm? - The package manager for kubernetes, Helm is the best way to find, share, and use sof ...
- 阿里巴巴 Kubernetes 应用管理实践中的经验与教训
作者 | 孙健波(阿里巴巴技术专家).赵钰莹 导读:云原生时代,Kubernetes 的重要性日益凸显.然而,大多数互联网公司在 Kubernetes 上的探索并非想象中顺利,Kubernetes 自 ...
- 阿里巴巴的 Kubernetes 应用管理实践经验与教训
作者 | 孙健波(天元) 阿里巴巴技术专家 导读:本文整理自孙健波在 ArchSummit 大会 2019 北京站演讲稿记录.首先介绍了阿里巴巴基于 Kubernetes 项目进行大规模应用实践过程 ...
- Helm 安装部署Kubernetes的dashboard
Kubernetes Dashboard 是 k8s集群的一个 WEB UI管理工具,代码托管在 github 上,地址:https://github.com/kubernetes/dashboard ...
- 容器云平台监控告警体系(三)—— 使用Prometheus Operator部署并管理Prometheus Server
1.概述 Prometheus Operator是一种基于Kubernetes的应用程序,用于管理Prometheus实例和相关的监控组件.它是由CoreOS开发的开源工具,旨在简化Prometheu ...
- Gravitational Teleport 开源的通过ssh && kubernetes api 管理linux 服务器集群的网关
Gravitational Teleport 是一个开源的通过ssh && kubernetes api 管理linux 服务器集群的网关 支持以下功能: 基于证书的身份认证 ssh ...
- Kubernetes 对象管理的三种方式
Kubernetes 中文文档 1. Kubernetes 对象管理的三种方式对比 Kubernetes 中的对象管理方式,根据对象配置信息的位置不同可以分为两大类: 命令式:对象的参数通过命令指定 ...
- kubernetes包管理工具Helm安装
helm官方建议使用tls,首先生成证书. openssl genrsa -out ca.key.pem openssl req -key ca.key.pem -new -x509 -days -s ...
随机推荐
- linux用户与用户组管理
linux用户与用户组管理 目录 linux用户与用户组管理 1.linux用户管理 1.1 用户基础 1.2 /etc/passwd:用户信息文件 1.3 /etc/shadow:用户密码信息文件 ...
- 超级详细的Oracle安装图文详解!手把手教会您从下载到安装!
首发微信公众号:SQL数据库运维 原文链接:https://mp.weixin.qq.com/s?__biz=MzI1NTQyNzg3MQ==&mid=2247485532&idx=1 ...
- DB2 关联更新
update GIS_TER_ADDRESS_MSG set (POS_X,POS_Y)=(select LAT,LON from TEMP_ATM where GIS_TER_ADDRESS_MSG ...
- .NET 代理模式(二) 动态代理-DispatchProxy
前言 我们都知道,在.NET中实现动态代理AOP有多种方案,也有很多框架支持,但大多框架的实现原理都是通过Emit配合Activator一起使用,从IL级别上实现动态代理. 其实在.NET中有一个更为 ...
- C 语言编程 — 异常处理
目录 文章目录 目录 前文列表 异常处理 perror() 和 strerror() 输出异常信息 程序退出状态 前文列表 <程序编译流程与 GCC 编译器> <C 语言编程 - 基 ...
- 基于webapi的websocket聊天室(四)
上一篇实现了多聊天室.这一片要继续改进的是实现收发文件,以及图片显示. 效果 问题 websocket本身就是二进制传输.文件刚好也是二进制存储的. 文件本身的传输问题不太,但是需要传输文件元数据,比 ...
- Java生成微信小程序码
官网文档地址:获取小程序码 package test; import com.alibaba.fastjson.JSONObject; import com.fasterxml.jackson.cor ...
- 推荐2款开源、美观的WinForm UI控件库
前言 今天大姚给大家分享2款开源.美观的WinForm UI控件库,希望可以帮助到有需要的同学. WinForm介绍 WinForm是一个传统的桌面应用程序框架,它基于 Windows 操作系统的原生 ...
- uniapp 组件使用
组件使用情况:页面出现多个相似的页面这个时候我们就可以把公共的页面进行封装,避免冗余的代码 1. compoents 目录下新建组件,名称随意[案例就叫 newsList]2. 开始封装需要多次使用的 ...
- Matlab打印运行进度
在运行matlab程序的过程中,有时候需要实时地掌握程序运行的进度,尤其对于一些耗时较长的循环操作,能够及时地输出运行进度,显得非常有必要. 打印进度条的实现方式就是不断地退格.输出. 退 ...