【Socket】解决TCP粘包问题
一、介绍
TCP一种面向连接的、可靠的、基于字节流的传输层协议。
三次握手:
- 客户端发送服务端连接请求,等待服务端的回复。
- 服务端收到请求,服务端回复客户端,可以建立连接,并等待。
- 客户端收到回复并发送,确认连接。服务端收到回复。连接成功。
四次挥手:
与三次握手不同,客户端和服务端都可以主动断开连接。
- 服务A向服务B发送FIN报文段,表示没有数据要传输
- 服务B收到报文段,回复一个ACK报文段,表示也没有数据需要传输了。
- 服务B发送FIN报文段,请求关闭连接。
- 服务A收到报文段,服务B发送ACK报文段,服务B收到报文段后直接关闭连接,服务A没有收到回复,也开始断开连接。
因为复杂的三次握手和四次挥手,保证了数据的可靠性和安全性。因此也造成了更大的开销。
二、产生的问题
由于TCP的可靠性传输,可以理解为客户端和服务端之间建立了一个传输管道,可以互相不断的传输数据。但是可能由于数据的传输与接收之间存在差异。使用在服务端和客户端之间,存在一个缓冲区,用于数据的缓冲。数据传输之前会先到缓冲区。
例如服务端A和客户端B。A不断向服务端传输数据,B不断处理服务A传输的数据。服务A发送数据到缓冲区,服务B从缓冲区获取数据来处理。由于服务B处理的速度比较慢,就会导致缓冲区堆积多个数据包。当服务B处理完再取时,取出的可能是多个数据包粘在一起的数据包,这时候处理就会出现问题。
三、解决方案
设置包长、包头包尾、消息分隔符解决粘包和拆包问题。这些方法通过明确消息边界,确保接收端能够准确地解析每个完整的消息。这里举例数据包分隔符。
1、设置包头包尾
现在我们模拟粘包情况,也就是客户端数据堆积。
Server
import socket
import time
def receive_message(sock):
buffer = b""
while True:
packet = sock.recv(1024)
if not packet:
break
buffer += packet
print("缓冲区数据 : "+ str(buffer))
time.sleep(5)
while True:
start_index = buffer.find(b"StartPackage")
end_index = buffer.find(b"EndPackage")
if start_index != -1 and end_index != -1 and start_index < end_index:
start_index += len(b"StartPackage")
message = buffer[start_index:end_index]
buffer = buffer[end_index + len(b"EndPackage"):]
print("收到客户端消息: "+message.decode())
else:
break
server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_sock.bind(('localhost', 8888))
server_sock.listen(1)
client_sock, _ = server_sock.accept()
receive_message(client_sock)
client_sock.close()
server_sock.close()
Client
import socket
import time
def send_message(sock, message):
packet = b"StartPackage" + message.encode() + b"EndPackage"
sock.sendall(packet)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(('localhost', 8888))
for i in range(1,11,1):
message = "Hello, world!--"+str(i)
send_message(sock, message)
print("发送消息 "+message)
time.sleep(1)
sock.close()
根据服务端输出可以看到,缓冲区已经出现粘包,多个数据包堆积到一起,这里利用包头包尾进行拆包,确保数据的完整性。
2、设置包长
Server
import socket
import struct
import time
def receive_message(sock):
buffer = b""
while True:
packet = sock.recv(1024)
if not packet:
break
buffer += packet
print(f"缓冲区数据 : {buffer}")
while len(buffer) >= 4:
header = buffer[:4]
message_length = struct.unpack('>I', header)[0]
print(f"包长为: {message_length}")
if len(buffer) < 4 + message_length:
break
start_index = 4
end_index = 4 + message_length
message = buffer[start_index:end_index]
buffer = buffer[end_index:]
print(f"收到客户端消息: {message.decode()} ")
time.sleep(5)
server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_sock.bind(('localhost', 8888))
server_sock.listen(1)
client_sock, _ = server_sock.accept()
receive_message(client_sock)
client_sock.close()
server_sock.close()
Client
import socket
import struct
import time
def send_message(sock, message):
message_bytes = message.encode()
message_length = len(message_bytes)
header = struct.pack('>I', message_length)
packet = header + message_bytes
sock.sendall(packet)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(('localhost', 8888))
for i in range(1, 11):
message = "Hello, world!--" + str(i)
send_message(sock, message)
print(f"发送消息:{message}" )
time.sleep(1)
sock.close()
可以看到由于处理的时间过长,导致数据堆积在缓冲区形成粘包。通过在消息头部设置包长,确定数据包的完整性。通过包长将粘包进行拆包。
3、设置包分隔符
Server
import socket
import time
def receive_message(sock):
buffer = b""
delimiter = b"<END>"
while True:
packet = sock.recv(1024)
if not packet:
break
buffer += packet
print("f缓冲区数据: {buffer} ")
while True:
end_index = buffer.find(delimiter)
if end_index != -1:
message = buffer[:end_index]
buffer = buffer[(end_index + len(delimiter)):]
print(f"收到客户端消息: { message.decode()} ")
else:
break
time.sleep(5)
server_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
server_sock.bind(('localhost', 8888))
server_sock.listen(1)
client_sock, _ = server_sock.accept()
receive_message(client_sock)
client_sock.close()
server_sock.close()
Client
import socket
import time
def send_message(sock, message):
delimiter = b"<END>"
packet = message.encode() + delimiter
sock.sendall(packet)
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(('localhost', 8888))
for i in range(10):
message = "Hello, world!--" + str(i)
send_message(sock, message)
print(f"发送消息: {message}")
time.sleep(1)
sock.close()
可以看到也是出现了数据堆积,粘包,但是最后打印的结果是正确的。通过使用数据包分隔符,保证数据的完整性。
四、总结
TCP粘包问题是由于TCP的流式传输特点导致的,在传输过程中多个数据包可能会粘在一起。粘包问题会导致接收端无法正确解析数据包,因为接收端无法区分哪些字节属于哪个数据包,可能会出现数据包内容混乱或不完整的情况。为了解决这个问题,可以使用固定长度消息、消息分隔符、消息头加消息体、应用层协议等方法。具体选择哪种方法需要根据应用场景和需求来确定。
【Socket】解决TCP粘包问题的更多相关文章
- python套接字解决tcp粘包问题
python套接字解决tcp粘包问题 目录 什么是粘包 演示粘包现象 解决粘包 实际应用 什么是粘包 首先只有tcp有粘包现象,udp没有粘包 socket收发消息的原理 发送端可以是一K一K地发送数 ...
- Netty使用LineBasedFrameDecoder解决TCP粘包/拆包
TCP粘包/拆包 TCP是个”流”协议,所谓流,就是没有界限的一串数据.TCP底层并不了解上层业务数据的具体含义,它会根据TCP缓冲区的实际情况进行包的划分,所以在业务上认为,一个完整的包可能会被TC ...
- 深入学习Netty(5)——Netty是如何解决TCP粘包/拆包问题的?
前言 学习Netty避免不了要去了解TCP粘包/拆包问题,熟悉各个编解码器是如何解决TCP粘包/拆包问题的,同时需要知道TCP粘包/拆包问题是怎么产生的. 在此博文前,可以先学习了解前几篇博文: 深入 ...
- socket编程 TCP 粘包和半包 的问题及解决办法
一般在socket处理大数据量传输的时候会产生粘包和半包问题,有的时候tcp为了提高效率会缓冲N个包后再一起发出去,这个与缓存和网络有关系. 粘包 为x.5个包 半包 为0.5个包 由于网络原因 一次 ...
- netty 解决TCP粘包与拆包问题(二)
TCP以流的方式进行数据传输,上层应用协议为了对消息的区分,采用了以下几种方法. 1.消息固定长度 2.第一篇讲的回车换行符形式 3.以特殊字符作为消息结束符的形式 4.通过消息头中定义长度字段来标识 ...
- netty 解决TCP粘包与拆包问题(一)
1.什么是TCP粘包与拆包 首先TCP是一个"流"协议,犹如河中水一样连成一片,没有严格的分界线.当我们在发送数据的时候就会出现多发送与少发送问题,也就是TCP粘包与拆包.得不到我 ...
- 1. Netty解决Tcp粘包拆包
一. TCP粘包问题 实际发送的消息, 可能会被TCP拆分成很多数据包发送, 也可能把很多消息组合成一个数据包发送 粘包拆包发生的原因 (1) 应用程序一次写的字节大小超过socket发送缓冲区大小 ...
- c#解决TCP“粘包”问题
一:TCP粘包产生的原理 1,TCP粘包是指发送方发送的若干包数据到接收方接收时粘成一包,从接收缓冲区看,后一包数据的头紧接着前一包数据的尾.出现粘包现象的原因是多方面的,它既可能由发送方造成,也可能 ...
- 【转】Netty之解决TCP粘包拆包(自定义协议)
1.什么是粘包/拆包 一般所谓的TCP粘包是在一次接收数据不能完全地体现一个完整的消息数据.TCP通讯为何存在粘包呢?主要原因是TCP是以流的方式来处理数据,再加上网络上MTU的往往小于在应用处理的消 ...
- Netty之解决TCP粘包拆包(自定义协议)
1.什么是粘包/拆包 一般所谓的TCP粘包是在一次接收数据不能完全地体现一个完整的消息数据.TCP通讯为何存在粘包呢?主要原因是TCP是以流的方式来处理数据,再加上网络上MTU的往往小于在应用处理的消 ...
随机推荐
- Typora图床配置(Typora+PicGo+Github)
Typora图床配置(Typora+PicGo+Github) 一.Github配置 登录github:https://github.com/ 新建仓库 生成私人令牌 Settings->Dev ...
- Greenplum Jdbc 调用 SETOF refcursor
最近公司需要用Greenplum,在调用 jdbc的时候遇到了一些问题.由于我们前提的业务都是使用 sqlserver,sqlserver的 procedure 在前端展示做数据源的时候才用的非常多, ...
- LRU缓存及其实现
缓存是我们日常开发中来提高性能最直接的方式,经常会听到有人说:性能不行?是因为你没加缓存!常见的缓存有外部缓存服务以及程序内部缓存,外部缓存服务包括:Redis.Memcached等,内部缓存就是我们 ...
- Oracle 在PL/SQL将字符串分割输出
Oracle 在PL/SQL将字符串分割输出 示例如下: declare begin for maina in (select tt.line ll from (select regexp_subst ...
- 阿里巴巴大规模应用Flink的踩坑经验:如何大幅降低 HDFS 压力?
众所周知 Flink 是当前广泛使用的计算引擎,Flink 使用 checkpoint 机制进行容错处理[1],Flink 的 checkpoint 会将状态快照备份到分布式存储系统,供后续恢复使用. ...
- 顺丰科技 Hudi on Flink 实时数仓实践
简介: 介绍了顺丰科技数仓的架构,趟过的一些问题.使用 Hudi 来优化整个 job 状态的实践细节,以及未来的一些规划. 本文作者为刘杰,介绍了顺丰科技数仓的架构,趟过的一些问题.使用 Hudi ...
- [FAQ] golang-migrate/migrate error: migration failed in line 0: (details: Error 1065: Query was empty)
当我们使用 migrate create 创建了迁移文件. 没有及时填写内容,此时运行 migrate 的后续命令比如 up.down 会抛出错误: error: migration failed i ...
- dotnet 7 WPF 破坏性改动 按下 F3 让 DataGrid 自动排序
本文记录在 dotnet 7 下的 WPF 的一个破坏性改动.在 dotnet 7 下的 WPF 支持 DataGrid 在按下 F3 键的时候,自动按照当前所选列进行列自动排序.这将会让原本采用 F ...
- 最近常用的几个【行操作】的Pandas函数
最近在做交易数据的统计分析时,多次用到数据行之间的一些操作,对于其中的细节,简单做了个笔记. 1. shfit函数 shift函数在策略回测代码中经常出现,计算交易信号,持仓信号以及资金曲线时都有涉及 ...
- 如何对一个新的 VSCode 配置 LaTeX
texlive 的安装件参考资料 [1]. 往 VSCode 里面装 LaTeX Workshop 插件,也可以直接搜 James-Yu.latex-workshop. Ctrl+Shift+P 打开 ...