我们都知道《权利的游戏》在全世界都很多忠实的粉丝,除去你永远不知道剧情下一秒谁会挂这种意外“惊喜”,当中复杂交错的人物关系也是它火爆的原因之一,而本文介绍如何通过 NetworkX 访问开源的分布式图数据库 Nebula Graph,并借助可视化工具—— Gephi 来可视化分析《权力的游戏》中的复杂的人物图谱关系。

数据集

本文的数据集来源:冰与火之歌第一卷(至第五卷)[1]

  • 人物集 (点集):书中每个角色建模为一个点,点只有一个属性:姓名
  • 关系集(边集):如果两个角色在书中发生过直接或间接的交互,则有一条边;边只有一个属性:权重,权重的大小代表交互的强弱。

这样的点集和边集构成一个图网络,这个网络存储在图数据库 Nebula Graph [2]中。

社区划分——Girvan-Newman 算法

我们使用 NetworkX [3] 内置的社区发现算法 Girvan-Newman 来为我们的图网络划分社区。

以下为「社区发现算法 Girvan-Newman」解释:

网络图中,连接较为紧密的部分可以被看成一个社区。每个社区内部节点之间有较为紧密的连接,而在两个社区间连接则较为稀疏。社区发现就是找到给定网络图所包含的一个个社区的过程。

Girvan-Newman 算法即是一种基于介数的社区发现算法,其基本思想是根据边介数中心性(edge betweenness)从大到小的顺序不断地将边从网络中移除直到整个网络分解为各个社区。因此,Girvan-Newman 算法实际上是一种分裂方法。

Girvan-Newman 算法的基本流程如下:

(1)计算网络中所有边的边介数;

(2)找到边介数最高的边并将它从网络中移除;

(3)重复步骤 2,直到每个节点成为一个独立的社区为止,即网络中没有边存在。

概念解释完毕,下面来实操下。

  1. 使用 Girvan-Newman 算法划分社区。NetworkX 示例代码如下
comp = networkx.algorithms.community.girvan_newman(G)
k = 7
limited = itertools.takewhile(lambda c: len(c) <= k, comp)
communities = list(limited)[-1]
  1. 为图中每个点添加一个 community 属性,该属性值记录该点所在的社区编号
community_dict = {}
community_num = 0
for community in communities:
for character in community:
community_dict[character] = community_num
community_num += 1
nx.set_node_attributes(G, community_dict, 'community')

节点样式——Betweenness Centrality 算法

下面我们来调整下节点大小及节点上标注的角色姓名大小,我们使用 NetworkX 的 Betweenness Centrality 算法来决定节点大小及节点上标注的角色姓名的大小。

图中各个节点的重要性可以通过节点的中心性(Centrality)来衡量。在不同的网络中往往采用了不同的中心性定义来描述网络中节点的重要性。Betweenness Centrality 根据有多少最短路径经过该节点,来判断一个节点的重要性。

  1. 计算每个节点的介数中心性的值
betweenness_dict = nx.betweenness_centrality(G) # Run betweenness centrality
  1. 为图中每个点再添加一个 betweenness 属性
nx.set_node_attributes(G, betweenness_dict, 'betweenness')

边的粗细

边的粗细直接由边的权重属性来决定。

通过上面的处理,现在,我们的节点拥有 name、community、betweenness 三个属性,边只有一个权重 weight 属性。

下面显示一下:

import matplotlib.pyplot as plt
color = 0
color_map = ['red', 'blue', 'yellow', 'purple', 'black', 'green', 'pink']
for community in communities:
nx.draw(G, pos = nx.spring_layout(G, iterations=200), nodelist = community, node_size = 100, node_color = color_map[color])
color += 1
plt.savefig('./game.png')

emmm,有点丑…

虽然 NetworkX 本身有不少可视化功能,但 Gephi [4] 的交互和可视化效果更好。

接入可视化工具 Gephi

现在将上面的 NetworkX 数据导出为 game.gephi 文件,并导入 Gephi。

nx.write_gexf(G, 'game.gexf')

Gephi 可视化效果展示

在 Gephi 中打开刚才导出的 game.gephi 文件,然后微调 Gephi 中的各项参数,就以得到一张满意的可视化:

  1. 将布局设置为 Force Atlas, 斥力强度改为为 500.0, 勾选上 由尺寸调整 选项可以尽量避免节点重叠:

Force Atlas 为力引导布局,力引导布局方法能够产生相当优美的网络布局,并充分展现网络的整体结构及其自同构特征。力引导布局即模仿物理世界的引力和斥力,自动布局直到力平衡。

  1. 给划分好的各个社区网络画上不同的颜色:

在外观-节点-颜色-Partition 中选择 community(这里的 community 就是我们刚才为每个点添加的社区编号属性)

  1. 决定节点及节点上标注的角色姓名的大小:

在外观-节点-大小-Ranking 中选择 betweenness(这里的 betweenness 就是我们刚才为每个点添加的 betweenness 属性)

  1. 边的粗细由边的权重属性来决定:

在外观-边-大小-Ranking 中选择边的权重

  1. 导出图片再加个头像效果

大功告成,一张权力游戏的关系谱图上线 每个节点可以看到对应的人物信息。

下一篇

本篇主要介绍如何使用 NetworkX,并通过 Gephi 做可视化展示。下一篇将介绍如何通过 NetworkX 访问图数据库 Nebula Graph 中的数据。

本文的代码可以访问[5]。

致谢:本文受工作 [6] 的启发

Reference

[1] https://www.kaggle.com/mmmarchetti/game-of-thrones-dataset

[2] https://github.com/vesoft-inc/nebula

[3] https://networkx.github.io/

[4] https://gephi.org/

[5] https://github.com/jievince/nx2gephi

[6] https://www.lyonwj.com/2016/06/26/graph-of-thrones-neo4j-social-network-analysis/

作者有话说:Hi,我是王杰,是图数据 Nebula Graph 研发工程师,希望本次的经验分享能给大家带来帮助,如有不当之处也希望能帮忙纠正,谢谢~

用 NetworkX + Gephi + Nebula Graph 分析<权力的游戏>人物关系(上篇)的更多相关文章

  1. GraphX 在图数据库 Nebula Graph 的图计算实践

    不同来源的异构数据间存在着千丝万缕的关联,这种数据之间隐藏的关联关系和网络结构特性对于数据分析至关重要,图计算就是以图作为数据模型来表达问题并予以解决的过程. 一.背景 随着网络信息技术的飞速发展,数 ...

  2. Nebula Graph 在微众银行数据治理业务的实践

    本文为微众银行大数据平台:周可在 nMeetup 深圳场的演讲这里文字稿,演讲视频参见:B站 自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 ...

  3. Python基于共现提取《釜山行》人物关系

    Python基于共现提取<釜山行>人物关系 一.课程介绍 1. 内容简介 <釜山行>是一部丧尸灾难片,其人物少.关系简单,非常适合我们学习文本处理.这个项目将介绍共现在关系中的 ...

  4. Nebula Graph 在网易游戏业务中的实践

    本文首发于 Nebula Graph Community 公众号 当游戏上知识图谱,网易游戏是如何应对大规模图数据的管理问题,Nebula Graph 又是如何帮助网易游戏落地游戏内复杂的图的业务呢? ...

  5. 使用图数据库 Nebula Graph 数据导入快速体验知识图谱 OwnThink

    前言 本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱--OwnThink(链接:https://github.com/ownthink/Kn ...

  6. 使用图数据库 Nebula Graph 数据导入快速体验知识图谱

    本文由 Nebula Graph 实习生@王杰贡献. 最近 @Yener 开源了史上最大规模的中文知识图谱——OwnThink(链接:https://github.com/ownthink/Knowl ...

  7. 分布式图数据库 Nebula Graph 的 Index 实践

    导读 索引是数据库系统中不可或缺的一个功能,数据库索引好比是书的目录,能加快数据库的查询速度,其实质是数据库管理系统中一个排序的数据结构.不同的数据库系统有不同的排序结构,目前常见的索引实现类型如 B ...

  8. 图数据库 Nebula Graph 是什么

    图数据库(英语:Graph Database)是一个使用图结构进行语义查询的数据库.该系统的关键概念是图,形式上是点 (Node 或者 Vertex) 和边 (Edge 或者 Relationship ...

  9. 新手阅读 Nebula Graph 源码的姿势

    摘要:在本文中,我们将通过数据流快速学习 Nebula Graph,以用户在客户端输入一条 nGQL 语句 SHOW SPACES 为例,使用 GDB 追踪语句输入时 Nebula Graph 是怎么 ...

  10. 图数据库对比:Neo4j vs Nebula Graph vs HugeGraph

    本文系腾讯云安全团队李航宇.邓昶博撰写 图数据库在挖掘黑灰团伙以及建立安全知识图谱等安全领域有着天然的优势.为了能更好的服务业务,选择一款高效并且贴合业务发展的图数据库就变得尤为关键.本文挑选了几款业 ...

随机推荐

  1. TienChin 渠道管理-前端展示渠道信息

    在编写 Vue 项目的时候我们可以使用 IDEA 当中提供的一个工具叫做 structure,也就是说可以很轻松的列举出当前 Vue 文件的大致结构,点那个就会跳转到对应的地方. 简简单单介绍一个编写 ...

  2. TienChin 创建菜单页面

    上一节当中我们只是给后台添加了对应的菜单,实际上对应的页面还没有存在这节主要就是创建出来页面: 促销活动: activity 统计分析: analysis 商机管理: business 渠道管理: c ...

  3. Docker 安装 Nacos 注册中心

    废话不多说直接上安装脚本: 在运行安装脚本之前,首先,我们查看一下 Nacos 的版本分别有哪些使用 docker search nacos: 然后在执行: docker pull nacos/nac ...

  4. 你的代码已被埋在北极冰雪之下,保存千年——GitHub北极代码保险库

    GitHub存档计划:北极代码保险库 在2019 GitHub 宇宙大会(GitHub Universe 2019)上,他们提到了一个问题,1000年后的软件会是什么样?人类会是什么样子?对此我们只能 ...

  5. 手把手教你-把Kali Linux系统安装到U盘 【超详细】(随身携带/即插即用)

    [0-背景说明]: 1)为什么想要把Kali Linux系统安装到U盘? 之前学习渗透测试的时候,有安装过虚拟机,在虚拟机上安装Kali Linux系统,但是因为是在现有系统上安装虚拟机又安装kali ...

  6. 【C++深度剖析】为什么C++支持函数重载而C不支持--C++程序编译链接过程--符号表生成规则【Linux环境超详细解释C++函数重载底层原理】

    文章目录 前言 Linux环境g++编译器的配置以及一些准备工作 源文件的符号表生成以及分析 尾声 前言 先赞后看好习惯 打字不容易,这都是很用心做的,希望得到支持你 大家的点赞和支持对于我来说是一种 ...

  7. spring声明式事务(@Transactional)开发常犯的几个错误及解决办法

    spring声明式事务(@Transactional)开发常犯的几个错误及解决办法 目前JAVA的微服务项目基本都是SSM结构(即:springCloud +springMVC+Mybatis),而其 ...

  8. ThinkPHP 6.0 SQL注入漏洞修复

    公司买的官网被政府网安检测出SQL注入漏洞: 隐患描述 SQL漏洞证明语句: python3 sqlmap.py -u "http://xxxx?keywords=1" -p ke ...

  9. 《ASP.NET Core 微服务实战》-- 读书笔记(第12章)

    第 12 章 设计汇总 微服务开发并不是要学习 C#.Java 或者 Go 编程--而是要学习如何开发应用以适应并充分利用弹性伸缩环境的优势,它们对托管环境没有偏好,并能瞬间启停 换句话说,我们要学习 ...

  10. Kafka-合理设置broker、partition、consumer数量

    1.broker的数量最好大于等于partition数量 一个partition最好对应一个硬盘,这样能最大限度发挥顺序写的优势. 一个broker如果对应多个partition,需要随机分发,顺序I ...