思路:

先将时间进行离散化,设总时间为 \(cnt\),然后考虑求出 \(W(l,r)\),即在时间段 \([l,r]\) 内的所有节目,可以 \(n^2\) 前缀和,也可以 \(n^3\) 暴力。

然后定义 \(f_{i,j}\) 表示前 \(i\) 个时间,一号场地有 \(j\) 个节目时,二号场地最多的节目数量,则状态转移方程为:

\[f_{i,j} = \max\limits_{k=0}^{i-1} \max(f_{k,j} + W(k,i),f_{k,j-W(k,i)})
\]

那么可以得到:

\[ans_0 = \max\limits_{i=0}^n \min(i,f_{cnt,i})
\]

则第一个问的时间复杂度为 \(O(N^3)\)。

然后再看第二个问,需要定义 \(g_{i,j}\) 表示 \(i \sim cnt\) 的时间段,一号场地有 \(j\) 个节目时,二号场地最多的节目数量,则状态转移方程类似:

\[g_{i,j} = \max\limits_{k=i+1}^{cnt} \max(g_{k,j} + W(i,k),g_{k,j-W(i,k)})
\]

然后再定义 \(dp_{l,r}\) 表示若强制选 \([l,r]\) 的全部节目的局部最优解,则可以枚举左边和右边一号场有多少个进行转移:

\[dp_{l,r} = \max\limits_{i=0}^n \max\limits_{j=0}^n \min(i+W(l,r)+j,f_{l,i} + g_{r,j})
\]

那么此时若强制选 \([l,r]\) 的答案,是 \(dp_{l,r}\) 吗?答案很明显,不是。

因为 \(f_{l-1,i}\) 和 \(g_{r+1,j}\) 只保证了 \(1 \sim l-1,r+1 \sim j\) 的局部最优,即可能会有一些活动的一端在 \([l,r]\) 内,但是另一端不在 \([l,r]\) 内,此时选这些节目可能会更优。

于是我们需要枚举一个 \([L,R]\),使得 \([L,R]\) 包含 \([l,r]\),故 \([l,r]\) 强制选的答案为:

\[\max_{L=1}^l \max_{R=r}^{cnt} dp_{L,R}
\]

故只要我们求出 \(dp\),就可以 \(O(N^3)\) 的得到答案。

但是计算 \(dp\) 的时间复杂度为 \(O(N^4)\),且常数较大,需要优化卡常大师应该能冲过去。

注意到 \(f_{l,i}\) 和 \(g_{r,j}\) 是会随着 \(i/j\) 的增大而不增的。

此时若 \(i\) 不动,则对于 \(j\) 来说, \(i+W(l,r)+j\) 是单增的,\(f_{l,i} + g_{r,j}\) 是单降的,故 \(H(y)=\min(i+W(l,r)+j,f_{l,i} + g_{r,j})\) 是一个单峰的函数,我们需要找到其最大值。

故我们可以对 \(j\) 进行走指针,从 \(yjn\) 开始,若 \(H(j-1)\ge H(j)\),就可以令 \(j \gets j - 1\)。

这里需要证明一下在 \(i\) 增加时,\(j\) 的单峰函数只会向左平移,因为这样才可以走指针:

在 \(i\) 增加时,\(i+W(l,r)+j\) 也会增加。

而对于 \(f_{l,i}+g_{r,j}\) 不增。

故会峰点左移。

总时间复杂度是 \(O(N^3)\)。

完整代码:

#include<bits/stdc++.h>
#define Add(x,y) (x+y>=mod)?(x+y-mod):(x+y)
#define lowbit(x) x&(-x)
#define pi pair<ll,ll>
#define pii pair<ll,pair<ll,ll>>
#define iip pair<pair<ll,ll>,ll>
#define ppii pair<pair<ll,ll>,pair<ll,ll>>
#define fi first
#define se second
#define full(l,r,x) for(auto it=l;it!=r;it++) (*it)=x
#define Full(a) memset(a,0,sizeof(a))
#define open(s1,s2) freopen(s1,"r",stdin),freopen(s2,"w",stdout);
using namespace std;
typedef double db;
typedef unsigned long long ull;
typedef long long ll;
bool Begin;
const int N=205,M=410,INF=1e9;
inline ll read(){
ll x=0,f=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-')
f=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return x*f;
}
inline void write(ll x){
if(x<0){
putchar('-');
x=-x;
}
if(x>9)
write(x/10);
putchar(x%10+'0');
}
struct Seg{
int l,r;
int id;
}A[N];
int n,cnt,Max;
int ans[N],s[N],h[M];
int F[M][N],G[M][N],dp[M][M],W[M][M];
int get(int i,int j,int l,int r){
return min(i+W[l][r]+j,F[l][i]+G[r][j]);
}
bool End;
int main(){
// open("A.in","A.out");
n=read();
for(int i=1;i<=n;i++){
A[i].l=read(),A[i].r=A[i].l+read();
A[i].id=i;
h[++cnt]=A[i].l;
h[++cnt]=A[i].r;
}
sort(h+1,h+cnt+1);
cnt=unique(h+1,h+cnt+1)-(h+1);
for(int i=1;i<=n;i++){
A[i].l=lower_bound(h+1,h+cnt+1,A[i].l)-h;
A[i].r=lower_bound(h+1,h+cnt+1,A[i].r)-h;
}
for(int l=1;l<=cnt;l++)
for(int r=l;r<=cnt;r++)
for(int i=1;i<=n;i++)
if(l<=A[i].l&&A[i].r<=r)
W[l][r]++;
for(int i=0;i<=cnt;i++)
for(int j=0;j<=n;j++)
F[i][j]=-INF;
F[0][0]=0;
for(int i=1;i<=cnt;i++)
for(int j=0;j<=n;j++)
for(int k=0;k<i;k++)
F[i][j]=max({F[i][j],F[k][j]+W[k][i],(j>=W[k+1][i])?(F[k][j-W[k][i]]):(-INF)});
for(int i=1;i<=cnt+1;i++)
for(int j=0;j<=n;j++)
G[i][j]=-INF;
G[cnt+1][0]=0;
for(int i=cnt;i>=1;i--)
for(int j=0;j<=n;j++)
for(int k=i+1;k<=cnt+1;k++)
G[i][j]=max({G[i][j],G[k][j]+W[i][k],(j>=W[i+1][k])?(G[k][j-W[i][k]]):(-INF)});
for(int l=1;l<=cnt;l++){
for(int r=l;r<=cnt;r++){
for(int x=0,y=n;x<=n;x++){
while(y&&get(x,y-1,l,r)>=get(x,y,l,r))
y--;
dp[l][r]=max(dp[l][r],get(x,y,l,r));
}
}
}
for(int i=0;i<=n;i++)
ans[0]=max(ans[0],min(i,F[cnt][i]));
for(int i=1;i<=n;i++)
for(int L=1;L<=A[i].l;L++)
for(int R=A[i].r;R<=cnt;R++)
ans[i]=max(ans[i],dp[L][R]);
for(int i=0;i<=n;i++){
write(ans[i]);
putchar('\n');
}
cerr<<'\n'<<abs(&Begin-&End)/1048576<<"MB";
return 0;
}

P1973 [NOI2011] NOI 嘉年华的更多相关文章

  1. luogu P1973 [NOI2011]NOI 嘉年华 dp

    LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...

  2. 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)

    洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...

  3. 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)

    传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...

  4. P1973 [NOI2011]Noi嘉年华

    传送门 首先可以把时间区间离散化 然后求出 $cnt[l][r]$ 表示完全在时间 $[l,r]$ 之内的活动数量 设 $f[i][j]$ 表示当前考虑到时间 $i$,第一个会场活动数量为 $j$ 时 ...

  5. 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)

    2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...

  6. 2436: [Noi2011]Noi嘉年华 - BZOJ

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  7. bzoj 2436: [Noi2011]Noi嘉年华

    Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...

  8. NOI2011 NOI嘉年华

    http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...

  9. bzoj2436: [Noi2011]Noi嘉年华

    我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...

  10. BZOJ2436 [Noi2011]Noi嘉年华 【dp】

    题目链接 BZOJ2436 题解 看这\(O(n^3)\)的数据范围,可以想到区间\(dp\) 发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整 ...

随机推荐

  1. mediaserverd

    1.mediaserverd是什么 mediaserverd(/usr/sbin/mediaserverd)是被root进程launchd启动的一个后台(daemon)进程,其描述文件为com.app ...

  2. CMake官网教程学习

    简介 本文档是根据CMake的官方教程学习的笔记,同时将教程中C++实现的代码更改为C语言实现.当前还未学习完. 教程官网:CMake Tutorial - CMake 3.27.0-rc1 Docu ...

  3. (九)selenium实现12306模拟登录

    登陆的唯一困难在于验证码的识别,此处使用第三方平台超级鹰进行验证码识别. from selenium import webdriver import time from PIL import Imag ...

  4. RSS 解析:全球内容分发的利器及使用技巧

    使用 RSS 可以将最新的网络内容从一个网站分发到全球数千个其他网站. RSS 允许快速浏览新闻和更新. RSS 文档示例 <?xml version="1.0" encod ...

  5. Opencompass笔记整理

    Smiling & Weeping ---- 山海自有归期,风雨自有相逢 大模型评测教程 随着人工智能技术的快速发展, 大规模预训练自然语言模型成为了研究热点和关注焦点.OpenAI于2018 ...

  6. Mybatis.xml文件中 大于小于等于

    Mybatis中 大于小于等于的转义写法第一种写法:符号    转义字符<    <<=    <=>    >>=    >=&    &am ...

  7. Maven配置阿里云镜像和本地仓库路径

    配置阿里云镜像仓库 在settings > mirrors标签下添加以下内容 <!-- Aliyun Mirror --> <mirror> <id>alim ...

  8. 关于java时间类型和格式化到微秒问题

    常规的问题此处略,因为网络上到处都是,这里主要讨论三个问题: 1.数据库的时间戳类型(含微秒)对应java的什么类型 java的常见时间类型比较多: java.util.Date java.sql.D ...

  9. spring与设计模式之三代理模式

    部分内容引用: https://blog.csdn.net/shulianghan/article/details/119798155 一.定义 1.1定义 对于现实生活中的代理,大家非常好理解.我们 ...

  10. C++面向对象多级菜单向Arduino的移植

    前段时间写了一篇文章<C++面向对象语言自制多级菜单>,文中指出了可以将HeleMenu库进行移植,现已完成技术思路,特此记录. 一.特性 基本与上一篇文章指出的一致,只是将菜单显示和响应 ...