P1973 [NOI2011] NOI 嘉年华
思路:
先将时间进行离散化,设总时间为 \(cnt\),然后考虑求出 \(W(l,r)\),即在时间段 \([l,r]\) 内的所有节目,可以 \(n^2\) 前缀和,也可以 \(n^3\) 暴力。
然后定义 \(f_{i,j}\) 表示前 \(i\) 个时间,一号场地有 \(j\) 个节目时,二号场地最多的节目数量,则状态转移方程为:
\]
那么可以得到:
\]
则第一个问的时间复杂度为 \(O(N^3)\)。
然后再看第二个问,需要定义 \(g_{i,j}\) 表示 \(i \sim cnt\) 的时间段,一号场地有 \(j\) 个节目时,二号场地最多的节目数量,则状态转移方程类似:
\]
然后再定义 \(dp_{l,r}\) 表示若强制选 \([l,r]\) 的全部节目的局部最优解,则可以枚举左边和右边一号场有多少个进行转移:
\]
那么此时若强制选 \([l,r]\) 的答案,是 \(dp_{l,r}\) 吗?答案很明显,不是。
因为 \(f_{l-1,i}\) 和 \(g_{r+1,j}\) 只保证了 \(1 \sim l-1,r+1 \sim j\) 的局部最优,即可能会有一些活动的一端在 \([l,r]\) 内,但是另一端不在 \([l,r]\) 内,此时选这些节目可能会更优。
于是我们需要枚举一个 \([L,R]\),使得 \([L,R]\) 包含 \([l,r]\),故 \([l,r]\) 强制选的答案为:
\]
故只要我们求出 \(dp\),就可以 \(O(N^3)\) 的得到答案。
但是计算 \(dp\) 的时间复杂度为 \(O(N^4)\),且常数较大,需要优化卡常大师应该能冲过去。
注意到 \(f_{l,i}\) 和 \(g_{r,j}\) 是会随着 \(i/j\) 的增大而不增的。
此时若 \(i\) 不动,则对于 \(j\) 来说, \(i+W(l,r)+j\) 是单增的,\(f_{l,i} + g_{r,j}\) 是单降的,故 \(H(y)=\min(i+W(l,r)+j,f_{l,i} + g_{r,j})\) 是一个单峰的函数,我们需要找到其最大值。
故我们可以对 \(j\) 进行走指针,从 \(yjn\) 开始,若 \(H(j-1)\ge H(j)\),就可以令 \(j \gets j - 1\)。
这里需要证明一下在 \(i\) 增加时,\(j\) 的单峰函数只会向左平移,因为这样才可以走指针:
在 \(i\) 增加时,\(i+W(l,r)+j\) 也会增加。
而对于 \(f_{l,i}+g_{r,j}\) 不增。
故会峰点左移。
总时间复杂度是 \(O(N^3)\)。
完整代码:
#include<bits/stdc++.h>
#define Add(x,y) (x+y>=mod)?(x+y-mod):(x+y)
#define lowbit(x) x&(-x)
#define pi pair<ll,ll>
#define pii pair<ll,pair<ll,ll>>
#define iip pair<pair<ll,ll>,ll>
#define ppii pair<pair<ll,ll>,pair<ll,ll>>
#define fi first
#define se second
#define full(l,r,x) for(auto it=l;it!=r;it++) (*it)=x
#define Full(a) memset(a,0,sizeof(a))
#define open(s1,s2) freopen(s1,"r",stdin),freopen(s2,"w",stdout);
using namespace std;
typedef double db;
typedef unsigned long long ull;
typedef long long ll;
bool Begin;
const int N=205,M=410,INF=1e9;
inline ll read(){
ll x=0,f=1;
char c=getchar();
while(c<'0'||c>'9'){
if(c=='-')
f=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return x*f;
}
inline void write(ll x){
if(x<0){
putchar('-');
x=-x;
}
if(x>9)
write(x/10);
putchar(x%10+'0');
}
struct Seg{
int l,r;
int id;
}A[N];
int n,cnt,Max;
int ans[N],s[N],h[M];
int F[M][N],G[M][N],dp[M][M],W[M][M];
int get(int i,int j,int l,int r){
return min(i+W[l][r]+j,F[l][i]+G[r][j]);
}
bool End;
int main(){
// open("A.in","A.out");
n=read();
for(int i=1;i<=n;i++){
A[i].l=read(),A[i].r=A[i].l+read();
A[i].id=i;
h[++cnt]=A[i].l;
h[++cnt]=A[i].r;
}
sort(h+1,h+cnt+1);
cnt=unique(h+1,h+cnt+1)-(h+1);
for(int i=1;i<=n;i++){
A[i].l=lower_bound(h+1,h+cnt+1,A[i].l)-h;
A[i].r=lower_bound(h+1,h+cnt+1,A[i].r)-h;
}
for(int l=1;l<=cnt;l++)
for(int r=l;r<=cnt;r++)
for(int i=1;i<=n;i++)
if(l<=A[i].l&&A[i].r<=r)
W[l][r]++;
for(int i=0;i<=cnt;i++)
for(int j=0;j<=n;j++)
F[i][j]=-INF;
F[0][0]=0;
for(int i=1;i<=cnt;i++)
for(int j=0;j<=n;j++)
for(int k=0;k<i;k++)
F[i][j]=max({F[i][j],F[k][j]+W[k][i],(j>=W[k+1][i])?(F[k][j-W[k][i]]):(-INF)});
for(int i=1;i<=cnt+1;i++)
for(int j=0;j<=n;j++)
G[i][j]=-INF;
G[cnt+1][0]=0;
for(int i=cnt;i>=1;i--)
for(int j=0;j<=n;j++)
for(int k=i+1;k<=cnt+1;k++)
G[i][j]=max({G[i][j],G[k][j]+W[i][k],(j>=W[i+1][k])?(G[k][j-W[i][k]]):(-INF)});
for(int l=1;l<=cnt;l++){
for(int r=l;r<=cnt;r++){
for(int x=0,y=n;x<=n;x++){
while(y&&get(x,y-1,l,r)>=get(x,y,l,r))
y--;
dp[l][r]=max(dp[l][r],get(x,y,l,r));
}
}
}
for(int i=0;i<=n;i++)
ans[0]=max(ans[0],min(i,F[cnt][i]));
for(int i=1;i<=n;i++)
for(int L=1;L<=A[i].l;L++)
for(int R=A[i].r;R<=cnt;R++)
ans[i]=max(ans[i],dp[L][R]);
for(int i=0;i<=n;i++){
write(ans[i]);
putchar('\n');
}
cerr<<'\n'<<abs(&Begin-&End)/1048576<<"MB";
return 0;
}
P1973 [NOI2011] NOI 嘉年华的更多相关文章
- luogu P1973 [NOI2011]NOI 嘉年华 dp
LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...
- 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)
洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...
- 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)
传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...
- P1973 [NOI2011]Noi嘉年华
传送门 首先可以把时间区间离散化 然后求出 $cnt[l][r]$ 表示完全在时间 $[l,r]$ 之内的活动数量 设 $f[i][j]$ 表示当前考虑到时间 $i$,第一个会场活动数量为 $j$ 时 ...
- 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)
2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...
- 2436: [Noi2011]Noi嘉年华 - BZOJ
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- bzoj 2436: [Noi2011]Noi嘉年华
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- NOI2011 NOI嘉年华
http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...
- bzoj2436: [Noi2011]Noi嘉年华
我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...
- BZOJ2436 [Noi2011]Noi嘉年华 【dp】
题目链接 BZOJ2436 题解 看这\(O(n^3)\)的数据范围,可以想到区间\(dp\) 发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整 ...
随机推荐
- RTMP推流FLV插入自定义SEI数据总结
一.需求 在RTMP推送的流中添加一个接口,可以添加自定义的数据(一段字节数组). 经过分析,在H264的流中可以通过SEI添加自定义数据,下面是实施的总结 二.实施 1)准备工具 RTMP推流客户端 ...
- itest(爱测试) 开源接口测试,敏捷测试管理平台10.0.0RC1 发布,重点增加压测功能
一:itest work 简介 itest work 开源敏捷测试管理,包含极简的任务管理,测试管理,缺陷管理,测试环境管理,接口测试,接口Mock,还有压测 ,又有丰富的统计分析,8合1工作站.可按 ...
- 在 Excel 中使用 Python 自动填充公式
安转Python包的国内镜像源 清华大学 https://pypi.tuna.tsinghua.edu.cn/simple 阿里云 https://mirrors.aliyun.com/pypi/si ...
- 关于朋友圈出现的小米新店广告骗局(非法获取个人消息)木马通过广东政务服务网(tyrz.gd.gov.cn)的url漏洞显示
前两天在朋友圈突然看到有发 小米新店开业 送千台扫地机器人的 广告,出于天上不会掉馅饼到我身上的原则 我选择忽略了,但是没多久 看到他又晒了个物流订单,于是还是点开看了一下,发现微信打开的网站还蛮正规 ...
- log4net info 方法 根据不同业务创建不同的文件名
log4net info 方法 根据不同业务创建不同的文件名 <configuration> <!-- ... 其他配置 ... --> <configSections& ...
- NET8中增加的简单适用的DI扩展库Microsoft.Extensions.DependencyInjection.AutoActivation
这个库提供了在启动期间实例化已注册的单例,而不是在首次使用它时实例化. 单例通常在首次使用时创建,这可能会导致响应传入请求的延迟高于平时.在注册时创建实例有助于防止第一次Request请求的SLA 以 ...
- JS 中 == 和 === 区别是什么?
a.对于string,number等基础类型,==和===有区别:不同类型间比较,==之比较"转化成同一类型后的值"看"值"是否相等,===如 果类型不 ...
- C# pythonnet(2)_傅里叶变换(FFT)
Python代码如下 import pandas as pd import numpy as np import matplotlib.pyplot as plt # 读取数据 data = pd.r ...
- .net入行三年的感想回顾
从21年毕业到现在,还差几天就三年了 工作后才知道,工作年限分为1年以下 .3~5年.5~10年.晋升老板,每段都有每段的故事和总结 回顾下我的前三年工作心路,思考下未来发展之路(emmm,我是觉得我 ...
- 全志科技T3国产工业核心板规格书(四核ARM Cortex-A7,主频1.2GHz)
1 核心板简介 创龙科技SOM-TLT3是一款基于全志科技T3处理器设计的4核ARM Cortex-A7国产工业核心板,每核主频高达1.2GHz. 核心板通过邮票孔连接方式引出CSI.TVIN.MIP ...