这里再重复一下标题为什么是"使用"而不是"实现":

首先,专业人士提供的算法比我们自己写的算法无论是效率还是正确率上都要高。

其次,对于数学不好的人来说,为了实现算法而去研究一堆公式是很痛苦的事情。

再次,除非他人提供的算法满足不了自己的需求,否则没必要"重复造轮子"。

下面言归正传,不了解贝叶斯算法的可以去查一下相关资料,这里只是简单介绍一下:

1.贝叶斯公式:

P(A|B)=P(AB)/P(B)

2.贝叶斯推断:

P(A|B)=P(A)×P(B|A)/P(B)

用文字表述:

后验概率=先验概率×相似度/标准化常量

而贝叶斯算法要解决的问题就是如何求出相似度,即:P(B|A)的值

3. 在scikit-learn包中提供了三种常用的朴素贝叶斯算法,下面依次说明:

1)高斯朴素贝叶斯:假设属性/特征是服从正态分布的(如下图),主要应用于数值型特征。

使用scikit-learn包中自带的数据,代码及说明如下:

>>>from sklearn import datasets   ##导入包中的数据
>>> iris=datasets.load_iris() ##加载数据
>>> iris.feature_names ##显示特征名字
['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
>>> iris.data ##显示数据
array([[ 5.1, 3.5, 1.4, 0.2],[ 4.9, 3. , 1.4, 0.2],[ 4.7, 3.2, 1.3, 0.2]............
>>> iris.data.size                ##数据大小 ---600个
>>> iris.target_names ##显示分类的名字
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')
>>> from sklearn.naive_bayes import GaussianNB  ##导入高斯朴素贝叶斯算法
>>> clf = GaussianNB() ##给算法赋一个变量,主要是为了方便使用
>>> clf.fit(iris.data, iris.target) ##开始分类。对于量特别大的样本,可以使用函数partial_fit分类,避免一次加载过多数据到内存

>>> clf.predict(iris.data[0].reshape(1,-1))       ##验证分类。标红部分特别说明:因为predict的参数是数组,data[0]是列表,所以需要转换一下
array([0])

>>> data=np.array([6,4,6,2])                      ##验证分类
>>> clf.predict(data.reshape(1,-1))
array([2])

这里涉及到一个问题:如何判断数据符合正态分布? R语言里面有相关函数判断,或者直接绘图也可以看出来,但是都是P(x,y)这种可以在坐标系里面直接

画出来的情况,而例子中的数据如何确定,目前还没有搞明白,这部分后续会补上。

2)多项式分布朴素贝叶斯:常用于文本分类,特征是单词,值是单词出现的次数。

##示例来在官方文档,详细说明见第一个例子
>>> import numpy as np
>>> X = np.random.randint(5, size=(6, 100)) ##返回随机整数值:范围[0,5) 大小6*100 6行100列
>>> y = np.array([1, 2, 3, 4, 5, 6])
>>> from sklearn.naive_bayes import MultinomialNB
>>> clf = MultinomialNB()
>>> clf.fit(X, y)
MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]

3)伯努力朴素贝叶斯:每个特征都是是布尔型,得出的结果是0或1,即出现没出现

##示例来在官方文档,详细说明见第一个例子
>>> import numpy as np
>>> X = np.random.randint(2, size=(6, 100))
>>> Y = np.array([1, 2, 3, 4, 4, 5])
>>> from sklearn.naive_bayes import BernoulliNB
>>> clf = BernoulliNB()
>>> clf.fit(X, Y)
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)
>>> print(clf.predict(X[2]))
[3]

补充说明:此文还不完善,示例一中也有部分说明需要写,最近事情较多,后续会逐渐完善。

机器学习:python中如何使用朴素贝叶斯算法的更多相关文章

  1. 【机器学习实战笔记(3-2)】朴素贝叶斯法及应用的python实现

    文章目录 1.朴素贝叶斯法的Python实现 1.1 准备数据:从文本中构建词向量 1.2 训练算法:从词向量计算概率 1.3 测试算法:根据现实情况修改分类器 1.4 准备数据:文档词袋模型 2.示 ...

  2. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  3. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  4. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  5. 朴素贝叶斯算法的python实现

    朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...

  6. [机器学习] 分类 --- Naive Bayes(朴素贝叶斯)

    Naive Bayes-朴素贝叶斯 Bayes' theorem(贝叶斯法则) 在概率论和统计学中,Bayes' theorem(贝叶斯法则)根据事件的先验知识描述事件的概率.贝叶斯法则表达式如下所示 ...

  7. 朴素贝叶斯算法--python实现

    朴素贝叶斯算法要理解一下基础:    [朴素:特征条件独立   贝叶斯:基于贝叶斯定理] 1朴素贝叶斯的概念[联合概率分布.先验概率.条件概率**.全概率公式][条件独立性假设.]   极大似然估计 ...

  8. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  9. 朴素贝叶斯算法的python实现方法

    朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...

随机推荐

  1. java多线程安全问题-同步修饰符于函数

    上一篇文章通过卖票使用同步代码块的方法解决安全问题本篇文章首先探讨如何找出这样的安全问题,并提出第二种方式(非静态函数synchronized修饰)解决安全问题 /* 需求: 银行有一个公共账号金库 ...

  2. Android Weekly Notes Issue #245

    Android Weekly Issue #245 February 19th, 2017 Android Weekly Issue #245 本期内容: 写好单元测试的几条原则; 如何mock Ko ...

  3. groovy学习(四)io

    package ch5 numbers = [11, 12, 13, 14]def staffTel = ['Ken' : 2745, 'John' : 2746, 'Jessie' : 2772]p ...

  4. WebSocket浅析(一):实现群聊功能

    首先WebSocket打破了传统的web请求响应模式,实现管道式的实时通信,并且可以持续连接. 相对于传统 HTTP 每次请求-应答都需要客户端与服务端建立连接的模式,WebSocket 是类似 So ...

  5. 2-23c#基础循环语句

    循环语句 必须具备四要素:初始条件.循环条件.循环体.状态改变 for (初始条件; 循环条件; 状态改变)    {  循环体} 简单举例 for(int i=1;i<=10;i++)//就是 ...

  6. angular : direative :comunication 指令之间的通讯

    在网络上可以找到多种指令之间的通讯 · $on,$emit,$boardcast (向上或向下冒泡) · 指令return的required (^)向上一个scope通讯,前提要先给scope一个na ...

  7. 第十八篇 js高级知识---作用域链

    一直有想法去写写js方面的东西,我个人是最喜欢js这门语言,喜欢的他的自由和强大,虽然作为脚本语言有很多限制的地方,但也不失为一个好的语言,尤其是在H5出现之后.下面开始说说js的方面的东西,由于自己 ...

  8. 安装 MySQL 后,需要调整的 10 个性能配置项

    注意:这篇博文的更新版本在这儿,MySQL 5.7 适用! 原文:Ten MySQL performance tuning settings after installation 在本文中,我们将探讨 ...

  9. 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)

    强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...

  10. MegaCli 安装过程

    首先说下自己遇到的坑: 百度搜索了一篇关于安装 MegaCli 的文章,于是乎就开始安装,装完之后获取不到 raid 的信息,后来发现是版本问题,就又搜索了一堆文章,最后搞定了 [root@web-0 ...