G. Raffles

time limit per test:5 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

Johnny is at a carnival which has n raffles. Raffle i has a prize with value pi. Each participant can put tickets in whichever raffles they choose (they may have more than one ticket in a single raffle). At the end of the carnival, one ticket is selected at random from each raffle, and the owner of the ticket wins the associated prize. A single person can win multiple prizes from different raffles.

However, county rules prevent any one participant from owning more than half the tickets in a single raffle, i.e. putting more tickets in the raffle than all the other participants combined. To help combat this (and possibly win some prizes), the organizers started by placing a single ticket in each raffle, which they will never remove.

Johnny bought t tickets and is wondering where to place them. Currently, there are a total of li tickets in the i-th raffle. He watches as other participants place tickets and modify their decisions and, at every moment in time, wants to know how much he can possibly earn. Find the maximum possible expected value of Johnny's winnings at each moment if he distributes his tickets optimally. Johnny may redistribute all of his tickets arbitrarily between each update, but he may not place more than t tickets total or have more tickets in a single raffle than all other participants combined.

Input

The first line contains two integers n, t, and q (1 ≤ n, t, q ≤ 200 000) — the number of raffles, the number of tickets Johnny has, and the total number of updates, respectively.

The second line contains n space-separated integers pi (1 ≤ pi ≤ 1000) — the value of the i-th prize.

The third line contains n space-separated integers li (1 ≤ li ≤ 1000) — the number of tickets initially in the i-th raffle.

The last q lines contain the descriptions of the updates. Each description contains two integers tk, rk (1 ≤ tk ≤ 2, 1 ≤ rk ≤ n) — the type of the update and the raffle number. An update of type 1 represents another participant adding a ticket to raffle rk. An update of type 2 represents another participant removing a ticket from raffle rk.

It is guaranteed that, after each update, each raffle has at least 1 ticket (not including Johnny's) in it.

Output

Print q lines, each containing a single real number — the maximum expected value of Johnny's winnings after the k-th update. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.

Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if .

Examples
Input
2 1 3
4 5
1 2
1 1
1 2
2 1
Output
1.666666667
1.333333333
2.000000000
Input
3 20 5
6 8 10
6 6 6
1 1
1 2
1 3
2 3
2 3
Output
12.000000000
12.000000000
11.769230769
12.000000000
12.000000000
Note

In the first case, Johnny only has one ticket to distribute. The prizes are worth 4 and 5, and the raffles initially have 1 and 2 tickets, respectively. After the first update, each raffle has 2 tickets, so Johnny has expected value of winning by placing his ticket into the second raffle. The second update adds a ticket to the second raffle, so Johnny can win in the first raffle. After the final update, Johnny keeps his ticket in the first raffle and wins .

In the second case, Johnny has more tickets than he is allowed to spend. In particular, after the first update, there are 7, 6, and 6 tickets in each raffle, respectively, so Johnny can only put in 19 tickets, winning each prize with probability . Also, note that after the last two updates, Johnny must remove a ticket from the last raffle in order to stay under the tickets in the third raffle.

题目链接:http://codeforces.com/contest/626/problem/G

题意:

给n个奖池,t张彩票,q次操作。

每个奖池的奖金为pi。

每个奖池现有的彩票的数量为ai,保证ai>=1;

q次操作,每次有两种,第i个奖池的现有彩票数量加一,或减一。

不允许投票的数量多于奖池数量的二分之一。

保证:

n,t,q<=2e5

ai<=1000 pi<=1000

求在采用最佳策略的前提下获得奖金的期望。

思路:

首先要证明贪心的正确性,即把某张票投入某奖池之后其下一张票给期望做出的贡献要小于上一张彩票...

把式子写一下,求导,发现导数是单调递减的...

然后是对于每次操作的处理。

一开始一直纠结如何处理从某奖池拿出的亏损。因为按照贡献差来说第一个和后来的是有区别的,而且还要处理是否超票的问题。

但是看了卿学姐的思路...

其实思路是很简洁的,大概的内容是维护一个亏损的线段树一个盈利的线段树,亏损的意思是从某一奖池拿出一张票我们期望的减少,盈利的意思是往某一奖池投入一张票期望的增加。其实奖池的投递数量不用限制的,只要把盈利控制为0就可以了。而对于减少某奖池现有彩票的数量,直接对上限和投递数量的数组进行处理,然后更新维护这个奖池的盈利和亏损就可以了。因为亏损和盈利是可以直接根据这两个数据确定的。

下面给出AC代码:【卿学姐的代码,参考一下,待补】

 #include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int x[maxn],y[maxn],p[maxn];
struct treenode
{
int L , R ;
double Up,Down,Max,Min,ans;
void updata()
{
ans=1.0*p[L]*min(1.0*x[L]/(x[L]+y[L]),0.5);
if(x[L]>=y[L])Up=;
else
{
Up=1.0*p[L]*(x[L]+1.0)/(x[L]+y[L]+1.0);
Up-=1.0*p[L]*x[L]/(x[L]+y[L]);
}
if(x[L])
{
if(x[L]>y[L])Down=;
else
{
Down=1.0*p[L]*x[L]/(x[L]+y[L]);
Down-=1.0*p[L]*(x[L]-1.0)/(x[L]-1.0+y[L]);
}
}
else
Down=1e18;
}
};
treenode tree[maxn*];
inline void push_up(int o)
{
tree[o].ans=tree[o<<].ans+tree[o<<|].ans;
tree[o].Up=max(tree[o<<].Up,tree[o<<|].Up);
tree[o].Down=min(tree[o<<].Down,tree[o<<|].Down);
if(tree[o<<].Up>tree[o<<|].Up)
tree[o].Max=tree[o<<].Max;
else
tree[o].Max=tree[o<<|].Max;
if(tree[o<<].Down<tree[o<<|].Down)
tree[o].Min=tree[o<<].Min;
else
tree[o].Min=tree[o<<|].Min;
} inline void build_tree(int L , int R , int o)
{
tree[o].L = L , tree[o].R = R, tree[o].ans=;
if(L==R)
tree[o].Min=tree[o].Max=L,tree[o].updata();
if (R > L)
{
int mid = (L+R) >> ;
build_tree(L,mid,o*);
build_tree(mid+,R,o*+);
push_up(o);
}
} inline void updata(int QL,int o)
{
int L = tree[o].L , R = tree[o].R;
if (L==R)
{
tree[o].updata();
}
else
{
int mid = (L+R)>>;
if (QL <= mid) updata(QL,o*);
else updata(QL,o*+);
push_up(o);
}
}
int main()
{
int n,t,q,mx,mi;
scanf("%d%d%d",&n,&t,&q);
for(int i=;i<=n;i++)
p[i]=read();
for(int i=;i<=n;i++)
y[i]=read();
build_tree(,n,);
while(t--)mx=tree[].Max,x[mx]++,updata(mx,);
while(q--)
{
int type,r;type=read(),r=read();
if(type==)y[r]++;else y[r]--;
updata(r,);
while()
{
int mx = tree[].Max;
int mi = tree[].Min;
if(tree[].Up<=tree[].Down)break;
x[mx]++,x[mi]--;
updata(mx,);
updata(mi,);
}
printf("%.12f\n",tree[].ans);
}
}

Codeforces 626G Raffles(贪心+线段树)的更多相关文章

  1. BZOJ4391 High Card Low Card [Usaco2015 dec](贪心+线段树/set库

    正解:贪心+线段树/set库 解题报告: 算辣直接甩链接qwq 恩这题就贪心?从前往后从后往前各推一次然后找一遍哪个地方最大就欧克了,正确性很容易证明 (这里有个,很妙的想法,就是,从后往前推从前往后 ...

  2. Buses and People CodeForces 160E 三维偏序+线段树

    Buses and People CodeForces 160E 三维偏序+线段树 题意 给定 N 个三元组 (a,b,c),现有 M 个询问,每个询问给定一个三元组 (a',b',c'),求满足 a ...

  3. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

  4. [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)

    [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...

  5. [Codeforces 1199D]Welfare State(线段树)

    [Codeforces 1199D]Welfare State(线段树) 题面 给出一个长度为n的序列,有q次操作,操作有2种 1.单点修改,把\(a_x\)修改成y 2.区间修改,把序列中值< ...

  6. [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)

    [Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...

  7. 【题解】P1712 [NOI2016]区间(贪心+线段树)

    [题解]P1712 [NOI2016]区间(贪心+线段树) 一个observe是,对于一个合法的方案,将其线段长度按照从大到小排序后,他极差的来源是第一个和最后一个.或者说,读入的线段按照长度分类后, ...

  8. Codeforces 626G Raffles 【贪心】【线段树】

    题意: 给n个奖池,t张彩票,q次操作. 每个奖池的奖金为pi. 每个奖池现有的彩票的数量为ai,保证ai>=1: q次操作,每次有两种,第i个奖池的现有彩票数量加一,或减一. 不允许投票的数量 ...

  9. codeforces 626 G. Raffles(线段树+思维+贪心)

    题目链接:http://codeforces.com/contest/626/problem/G 题解:这题很明显买彩票肯定要买贡献最大的也就是说买p[i]*(num[i]+1)/(num[i]+a[ ...

随机推荐

  1. 浅谈Unix I/O模型

    关于I/O模型的文章比较多,参考多篇后理解上仍然不太满意,终需自己整理一次,也是编写高吞吐量高性能网络接口模块的基础.这里所说的主要针对网络I/O,近几年面对越来越大的用户请求量,如何优化这些步骤直接 ...

  2. Docker 安装入门 --基础镜像

    安装Docker1.Docker命令安装 yum install docker //安装docker包 service docker start //设置服务启动  chkconfig docker ...

  3. 详解PHP反射API

    PHP中的反射API就像Java中的java.lang.reflect包一样.它由一系列可以分析属性.方法和类的内置类组成.它在某些方面和对象函数相似,比如get_class_vars(),但是更加灵 ...

  4. 基于Jmeter的PostgreSQL空间性能测试笔记

    这是很早之前做过的一个测试,最近在整理postgresql测试相关的资料,所以也把它拿出来了与大家分享. 首先解释一下所谓的PostgreSQL空间性能,主要是基于postgis的空间数据导入性能,详 ...

  5. 设计模式之 - 模板模式(Template Pattern)

    引入:这几天在看一本讲spring源码的书<SPRING技术内幕>里面在讲加载配置文件的时候,可以有不同的加载方式,如根据文件系统目录加载配置文件(FileSystemXmlApplica ...

  6. 学会C sharp计算机编程语言 轻松开发财务、统计软件

    就像人们用同一种语言才可以顺畅交流一样,语言是计算机编程的根本,是IT世界交流的工具.运用这些计算机语言,人们可以创造出一个美妙的世界.你点击某个网页或是安装一个应用程序软件,这简简单单动作的背后,就 ...

  7. [解决方案]WebAPI+SwaggerUI部署服务器后,访问一直报错的问题

    项目的背景:制作一批接口用来给前台app或者网站提供服务,因为WebApi是最近几年来比较流行和新颖的开发接口的方式,而且又属于轻型应用,所以选用它 部署的过程:建立了WebAPI项目并使用Swagg ...

  8. 宇宙探索特工队&scrum

    对scrum的一些理解 Scrum是一种迭代式增量软件开发过程,通常用于敏捷软件开发.Scrum包括了一系列实践和预定义角色的过程骨架.Scrum中的主要角色包括同项目经理类似的Scrum主管角色负责 ...

  9. HTML + CSS短标题(二,三,四文字长度)两端对齐的方式

    今天切图碰到了一个看似好弄,却并不好弄的文本两端对齐问题.如图1-1

  10. 消费五分钟,小白也能了解的经典技术:关于IP负载均衡(LVS之NAT)

    这里准备以两篇文章来大概讲述一下LVS负载均衡 NAT TUN/DR和共享存储 前言: 为什么搭建LVS: 若一台服务器只能支持10人在线.那么有100人访问,则需要多少台服务器. 这个不言而喻:10 ...