HDU 4777 Rabbit Kingdom
素因子分解,树状数组。$ACM/ICPC$ $2013$杭州区域赛$H$题。
首先需要处理出数字$a[i]$左边最远到$L[i]$,右边最远到$R[i]$区间内所有数字都与$a[i]$互质。
那么对于左端点在$[L[i],i]$并且右端点在$[i,R[i]]$的询问,$a[i]$就可以作出一个贡献。
接下来的问题就可以转化为二维平面上有很多矩形,每次询问一个点被多少矩形覆盖。可以离线操作,类似于扫描线的思想做就可以了。
素因子分解需要一开始把$20$万个数字都处理好,避免每组测试数据内重复处理。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream> #include<queue>
using namespace std; const int maxn=2e5+;
int w[maxn],n,q;
struct X
{
int x,y,ans,id;
} s[maxn]; struct OP
{
int x,y1,y2;
} add[maxn],del[maxn]; bool com[maxn];
int primes, prime[maxn],L[maxn],R[maxn];
int pre[maxn];
int c[maxn],hh; vector<int>Prime[maxn]; int lowbit(int x) { return x&(-x); }
void ADD(int p, int val) { while (p <= n) c[p] = c[p] + val, p = p + lowbit(p); }
int sum(int p) { int r = ; while (p > ) r = r + c[p], p = p - lowbit(p); return r; }
void update(int L, int R, int val) { ADD(L, val); ADD(R + , -val); } void solve()
{
primes = ;
memset(com,false,sizeof(com));
com[] = com[] = true;
for (int i = ; i < maxn; ++i)
{
if (!com[i])
{
prime[++primes] = i;
}
for (int j = ; j <= primes && i*prime[j] < maxn; ++j)
{
com[i*prime[j]] = true;
if (!(i % prime[j]))
break;
}
} for(int i=;i<=;i++)
{
int tp = i;
for(int j=;j<=primes&&tp!=;j++)
{
if(tp%prime[j]) continue; Prime[i].push_back(prime[j]); while(!(tp%prime[j])) tp /= prime[j]; if(!com[tp]&&tp>)
{
Prime[i].push_back(tp);
break;
}
}
}
} bool cmp1(X a,X b) { return a.x<b.x; }
bool cmp2(OP a,OP b) { return a.x<b.x; }
bool cmp3(X a,X b) { return a.id<b.id; } int main()
{
solve(); while(~scanf("%d%d",&n,&q))
{
if(n==&&q==) break;
for(int i=; i<=n; i++) scanf("%d",&w[i]); for(int i=; i<=q; i++) scanf("%d%d",&s[i].x,&s[i].y), s[i].id=i;
sort(s+,s++q,cmp1); for(int i=;i<=;i++) pre[i]=;
for(int i=;i<=n;i++)
{
if(w[i]==) L[i]=;
else
{
L[i]=;
for(int j=;j<Prime[w[i]].size();j++)
{
L[i]=max(L[i],pre[Prime[w[i]][j]]+);
pre[Prime[w[i]][j]]=i;
}
}
} for(int i=;i<=;i++) pre[i]=n+;
for(int i=n;i>=;i--)
{
if(w[i]==) R[i]=n;
else
{
R[i]=n+;
for(int j=;j<Prime[w[i]].size();j++)
{
R[i]=min(R[i],pre[Prime[w[i]][j]]-);
pre[Prime[w[i]][j]]=i;
}
}
} int sz1=,sz2=;
for(int i=;i<=n;i++)
{
add[sz1].x=L[i]; add[sz1].y1=i; add[sz1].y2=R[i]; sz1++;
del[sz2].x=i; del[sz2].y1=i; del[sz2].y2=R[i]; sz2++;
} sort(add,add+sz1,cmp2);
sort(del,del+sz2,cmp2); int idq=,idadd=,iddel=; memset(c,,sizeof c); for(int i=;i<=n;i++)
{
while(idadd<sz1&&add[idadd].x==i)
{
update(add[idadd].y1,add[idadd].y2,);
idadd++;
}
while(idq<=q&&s[idq].x==i)
{
s[idq].ans=sum(s[idq].y);
idq++;
}
while(iddel<sz2&&del[iddel].x==i)
{
update(del[iddel].y1,del[iddel].y2,-);
iddel++;
}
} sort(s+,s++q,cmp3); for(int i=;i<=q;i++) printf("%d\n",s[i].ans); }
return ;
}
HDU 4777 Rabbit Kingdom的更多相关文章
- HDU 4777 Rabbit Kingdom(树状数组)
HDU 4777 Rabbit Kingdom 题目链接 题意:给定一些序列.每次询问一个区间,求出这个区间和其它数字都互质的数的个数 #include <cstdio> #include ...
- HDU 4777 Rabbit Kingdom (2013杭州赛区1008题,预处理,树状数组)
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- HDU 4777 Rabbit Kingdom --容斥原理+树状数组
题意: 给一个数的序列,询问一些区间,问区间内与区间其他所有的数都互质的数有多少个. 解法: 直接搞有点难, 所谓正难则反,我们求区间内与其他随便某个数不互质的数有多少个,然后区间长度减去它就是答案了 ...
- HDU 4777 Rabbit Kingdom 树状数组
分析:找到每一个点的左边离他最近的不互质数,记录下标(L数组),右边一样如此(R数组),预处理 这个过程需要分解质因数O(n*sqrt(n)) 然后离线,按照区间右端点排序 然后扫一遍,对于当前拍好顺 ...
- hdu 4778 Rabbit Kingdom(减少国家)
题目链接:hdu 4778 Rabbit Kingdom 题目大意:Alice和Bob玩游戏,有一个炉子.能够将S个同样颜色的宝石换成一个魔法石.如今有B个包,每一个包里有若干个宝石,给出宝石的颜色. ...
- hdu 4777 树状数组+合数分解
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- P - 区间与其他数互质数的个数 HDU - 4777
Rabbit Kingdom Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- hdu 5030 Rabbit's String(后缀数组&二分法)
Rabbit's String Time Limit: 40000/20000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 5030 Rabbit's String
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5030 题意:给出一个长度为n的串S,将S分成最多K个子串S1,S2,……Sk(k<=K).选出每 ...
随机推荐
- [译]Java 设计模式之备忘录
(文章翻译来自Java Design Pattern: Memento) memento是一个保存另外一个对象内部状态拷贝的对象.这样以后就可以将该对象恢复到原先保存的状态. 在将来时空旅行将成为显示 ...
- 在openwrt上编译最简单的一个ipk包文件
1 什么是opkg Opkg 是一个轻量快速的套件管理系统,目前已成为 Opensource 界嵌入式系统标准.常用于路由.交换机等嵌入式设备中,用来管理软件包的安装升级与下载. opkg updat ...
- OpenCV2第一个马拉松8环——画一个柱状图
在包里 灰度直方图 彩色直方图 葵花宝典 直方图的理论还是非常丰富的,应用也非常多,诸如: 直方图均衡化 直方图匹配(meanshift,camshift) 在这里,我先介绍基础.怎样绘制图像的直方图 ...
- {{angular.js 使用技巧}} - 实现计算列属性
前端MV*框架现在有很多,其中某些框架有计算列(又叫监控属性),比如:微软推荐的 Knockout.js 和博客园司徒正美的 avalon.js 框架. 本人只使用过 Knockout.js,aval ...
- Coffee
Coffee 从接触Spring 到现在已经差不多2年多了,期间用它做过几个项目,从个人使用角度来说,Spring无疑是非常的成熟和方便的,但是知道怎么用,却不知道原理是码农和攻城师的区别,现在准备自 ...
- Json.Net6.0
Json.Net6.0入门学习试水篇 前言 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.简单地说,JSON 可以将 JavaScript 对象中表 ...
- c++类的构造函数与析构函数
为什么用构造函数与析构函数 构造函数: c++目标是让使用类对象就像使用标准类型一样,但是常规化的初始化句法不适用与类类型. ; //基本类型 struct thing { char *pn; int ...
- c++ virtual function 虚函数面试题
下面的代码输出什么? #include<iostream> using namespace std; class A { public: virtual void foo() { cout ...
- General Structure of Quartz.NET and How To Implement It
General Structure of Quartz.NET and How To Implement It General Structure of Quartz.NET and How To ...
- generating permunation
generating permunation——全排列(算法汇总) #include <iostream> #include <string> #include <vec ...