LCM Cardinality

Input: 
Standard Input

Output: Standard Output

Time Limit: 2 Seconds

A pair of numbers has a unique LCM but a single number can be the LCM of more than one possible pairs. For example 12 is the LCM of (1, 12)(2, 12)(3,4) etc.
For a given positive integer N, the number of different integer pairs with LCM is equal to N can be called the LCMcardinality of that number N. In this problem your job is
to find out the LCM cardinality of a number.

Input

The input file contains at most 101 lines of inputs. Each line contains an integer N (0<N<=2*109). Input is terminated by a line containing a single zero. This line should not be processed.

Output

For each line of input except the last one produce one line of output. This line contains two integers N and C. Here N is the input number and Cis its cardinality. These two numbers are
separated by a single space.

Sample Input                             Output for Sample Input

2                                                          
12
24
101101291
0

2 2

12 8

24 11

10110129

题意:给出a和b的最小公倍数N。找出符合条件的a、b有多少对。

分析:1. 设n = LCM(a,b) = (p1^r1) * (p2^r2) * (p3^r3) … (pm^rm)

   又设a=(p1^a1) * (p2^a2) * (p3^a3) … (pm^am),

   b=(p1^b1) * (p2^b2) * (p3^b3)… (pm^bm)

   由LCM的定义有ri = max{ai, bi}

   所以对于每一个ri,ai和bi中至少有一个要取ri

2. 对于ai取ri的情况,bi能够取[0,ri-1]的随意整数,这有ri种情况;

   bi取ri的情况相同是ri种 。

   最后加上ai和bi都取ri的情况,共同拥有(2*ri+1)种情况

3. 由于这么考虑把(a,b)和(b,a)算反复了,但(n,n)的情况仅仅算了一遍。所以最后要ans= (ans+1)/2=ans/2+1(由于ans是奇数)

4. 优化:仅仅考虑√n范围内的质数,但这样会存在漏掉一个大质数的情况(比方n=2*101) 。这个大质数的幂次仅仅能为1(即少算了一个*(2*1+1)),所以在这样的情况发生时要补上ans*=3,写成 位运算就是ans+=ans<<1。

#include <cstdio>
#include <cmath> int n; void get_ans() {
int tmp = n;
int m = (int)sqrt(n + 0.5);
long long ans = 1;
for(int i = 2; i <= m; i += 2) {
if(n % i == 0) {
int cnt = 0;
while(n % i == 0) {
n /= i;
cnt++;
}
ans *= (cnt << 1) + 1;
}
if(i == 2) i--;
}
if(n > 1) ans += (ans<<1);
ans = (ans >> 1) + 1;
printf("%d %lld\n", tmp, ans);
} int main() {
while(~scanf("%d", &n) && n) {
get_ans();
}
return 0;
}

UVA 10892 LCM Cardinality(数论 质因数分解)的更多相关文章

  1. UVA 10892 - LCM Cardinality

    Problem F LCM Cardinality Input: Standard Input Output: Standard Output Time Limit: 2 Seconds A pair ...

  2. UVA 10892 LCM Cardinality 数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  3. Uva 10892 LCM Cardinality (数论/暴力)

    题意:给出数n,求有多少组A,B的最小公约数为n; 思路:3000ms,直接暴力寻找,找到所有能把n整除的数 pi, 枚举所有pi 代码: #include <iostream> #inc ...

  4. UVA 10892 - LCM Cardinality(数学题)

    题目链接 写写,就ok了. #include <cstdio> #include <cstring> #include <string> #include < ...

  5. HDU3988-Harry Potter and the Hide Story(数论-质因数分解)

    Harry Potter and the Hide Story Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 ...

  6. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  7. 数学概念——J - 数论,质因数分解

    J - 数论,质因数分解 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  8. 简单数论之整除&质因数分解&唯一分解定理

    [整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a ...

  9. hdu1405 第六周J题(质因数分解)

    J - 数论,质因数分解 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u   Desc ...

随机推荐

  1. C#游戏框架uFrame

    C#游戏框架uFrame兼谈游戏架构设计 c#语言规范 阅读目录 1.概览 2.基本概念 3.依赖注入 4.Manager of Managers 5.利用UniRX实现响应式编程 6.研究总结 回到 ...

  2. js实现图片上传预览及进度条

    原文js实现图片上传预览及进度条 最近在做图片上传的时候,由于产品设计的比较fashion,上网找了比较久还没有现成的,因此自己做了一个,实现的功能如下: 1:去除浏览器<input type= ...

  3. asp.net 生成xml文件 与 asp生成xml文件

    一.asp.net 生成xml文件 webservice方式,调用接口: public XmlDocument List() { XmlDocument doc = new XmlDocument() ...

  4. 在Ubuntu下编译Assimp库

    在Ubuntu下编译Assimp库 怎样在Ubuntu下编译Assimp库?这是我曾经编译成功后做的笔记,供參考. 1.去以下的站点去下载Assimp库: http://assimp.sourcefo ...

  5. 编写一个void sort(int*x,int n)实现将x数组中的n个数据从大到小排序。n及数组元素在主函数中输入。将结果显示在屏幕上并输出到文件

    #include<stdio.h> void sort(int*x,int n) { int i,j,k,t; for(i=0;i<n-1;i++) { k=i; for(j=i+1 ...

  6. 代码格式化工具Astyle配置

    Astyle是一个很好的代码格式化工具,其他不多说,下面介绍一下我在VS 2010的配置 1. http://sourceforge.net/projects/astyle,这是该插件的网站,下载后把 ...

  7. linux下编译qt5.6.0静态库——configure配置(超详细,有每一个模块的说明)(乌合之众)

    linux下编译qt5.6.0静态库 linux下编译qt5.6.0静态库 configure生成makefile 安装选项 Configure选项 第三方库: 附加选项: QNX/Blackberr ...

  8. php使用 _before_index() 来实现访问页面前,判断登录

    C:\wamp\www\DEVOPS\Home\Lib\Action: <?php class IndexAction extends Action { function index(){ $t ...

  9. 1.1.5-学习Opencv与MFC混合编程之---画图工具 输入文字和填充图像 修改光标

    源代码:http://download.csdn.net/detail/nuptboyzhb/3961696 输入文字 l 对话框 1.    插入,资源,选择对话框资源 2.    编辑对话框如下: ...

  10. jqueryui datepicker refresh

    http://stackoverflow.com/questions/6056287/jquery-ui-datepicker-prevent-refresh-onselect 给选中的TD加背景色