二分/DP


  真是一道好题!

  第一问很简单的二分……

  第二问一开始我想成贪心了,其实应该是DP的= =

  然后没有注意……又MLE又TLE的……这题要对DP进行时空两方面的优化!!

  题解:(by JoeFan)

使用前缀和,令 Sum[i] 为前 i 根木棍的长度和。

  令 f[i][j] 为前 i 根木棍中切 j 刀,并且满足最长长度不超过 j 的方案数,那么:

    状态转移方程: f[i][j] = Σ f[k][j-1]   ((1 <= k <= i-1) &&  (Sum[i] - Sum[k] <= Len))  

  这样的空间复杂度为 O(nm) ,时间复杂度为 O(n^2 m) 。显然都超出了限制。

  下面我们考虑 DP 的优化。

  1) 对于空间的优化。

    这个比较显然,由于当前的 f[][j] 只与 f[][j-1] 有关,所以可以用滚动数组来实现。

    f[i][Now] 代替了 f[i][j] , f[i][Now^1] 代替了 f[i][j-1] 。为了方便,我们把 f[][Now^1] 叫做 f[][Last] 。

    这样空间复杂度为 O(n) 。满足空间限制。

  2) 对于时间的优化。

    考虑优化状态转移的过程。

    对于 f[i][Now] ,其实是 f[mink][Last]...f[i-1][Last] 这一段 f[k][Last] 的和,mink 是满足 Sum[i] - Sum[k] <= Len 的最小的 k ,那么,对于从 1 到 n 枚举的 i ,相对应的 mink 也一定是非递减的(因为 Sum[i] 是递增的)。我们记录下 f[1][Last]...f[i-1][Last] 的和 Sumf ,mink 初始设为 1,每次对于 i 将 mink 向后推移,推移的同时将被舍弃的 p 对应的 f[p][Last] 从 Sumf 中减去。那么 f[i][Now] 就是 Sumf 的值。

    这样时间复杂度为 O(nm) 。满足时间限制。

 /**************************************************************
Problem: 1044
User: Tunix
Language: C++
Result: Accepted
Time:4152 ms
Memory:4396 kb
****************************************************************/ //BZOJ 1044
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=1e5+,INF=~0u>>,P=;
typedef long long LL;
/******************tamplate*********************/
int n,m,ans,a[N],f[N][],pos[N],sumf[N][];
LL s[N];
bool check(int len){
int cnt=,sum=;
F(i,,n){
if (a[i]>len) return ;
if (sum+a[i]>len){
cnt++; sum=a[i];
}else sum+=a[i];
}
return cnt<=m;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("1044.in","r",stdin);
freopen("1044.out","w",stdout);
#endif
n=getint(); m=getint();
F(i,,n) {a[i]=getint();s[i]=s[i-]+a[i];} int l=,r=s[n],mid;
while(l<=r){
mid=l+r>>;
if (check(mid)) ans=mid,r=mid-;
else l=mid+;
}
printf("%d ",ans);
F(i,,n) sumf[i][]=;
int way=;
F(j,,m+){
int now=j&;
sumf[][now]=;
F(i,,n){
if (!pos[i])
pos[i]=pos[i-]; while(s[i]-s[pos[i]]>ans) pos[i]++;
f[i][now]=(sumf[i-][now^]-sumf[pos[i]-][now^]+P)%P;
sumf[i][now]=(sumf[i-][now]+f[i][now])%P;
}
way=(way+f[n][now])%P;
}
printf("%d\n",way);
return ;
}

1044: [HAOI2008]木棍分割

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2008  Solved: 725
[Submit][Status][Discuss]

Description

有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, 总共有n-1个连接处. 现在允许你最多砍断m个连接处, 砍完后n根木棍被分成了很多段,要求满足总长度最大的一段长度最小, 并且输出有多少种砍的方法使得总长度最大的一段长度最小. 并将结果mod 10007。。。

Input

输入文件第一行有2个数n,m. 接下来n行每行一个正整数Li,表示第i根木棍的长度.

Output

输出有2个数, 第一个数是总长度最大的一段的长度最小值, 第二个数是有多少种砍的方法使得满足条件.

Sample Input

3 2
1
1
10

Sample Output

10 2

HINT

两种砍的方法: (1)(1)(10)和(1 1)(10)

数据范围

n<=50000, 0<=m<=min(n-1,1000).

1<=Li<=1000.

Source

[Submit][Status][Discuss]

【BZOJ】【1044】【HAOI2008】木棍分割的更多相关文章

  1. BZOJ 1044: [HAOI2008]木棍分割(二分答案 + dp)

    第一问可以二分答案,然后贪心来判断. 第二问dp, dp[i][j] = sigma(dp[k][j - 1]) (1 <= k <i, sum[i] - sum[k] <= ans ...

  2. [BZOJ 1044] [HAOI2008] 木棍分割 【二分 + DP】

    题目链接:BZOJ 1044 第一问是一个十分显然的二分,贪心Check(),很容易就能求出最小的最大长度 Len . 第二问求方案总数,使用 DP 求解. 使用前缀和,令 Sum[i] 为前 i 根 ...

  3. BZOJ 1044: [HAOI2008]木棍分割

    Description 求 \(n\) 根木棍长度为 \(L\) ,分成 \(m\) 份,使最长长度最短,并求出方案数. Sol 二分+DP. 二分很简单啊,然后就是方案数的求法. 状态就是 \(f[ ...

  4. bzoj 1044 [HAOI2008]木棍分割(二分+贪心,DP+优化)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1044 [题意] n根木棍拼到一起,最多可以切m刀,问切成后最大段的最小值及其方案数. ...

  5. BZOJ 1044: [HAOI2008]木棍分割 DP 前缀和优化

    题目链接 咳咳咳,第一次没大看题解做DP 以前的我应该是这样的 哇咔咔,这tm咋做,不管了,先看个题解,再写代码 终于看懂了,卧槽咋写啊,算了还是抄吧 第一问类似于noip的那个跳房子,随便做 这里重 ...

  6. bzoj 1044 [HAOI2008]木棍分割——前缀和优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1044 前缀和优化. 但开成long long会T.(仔细一看不用开long long) #i ...

  7. bzoj 1044: [HAOI2008]木棍分割【二分+dp】

    对于第一问二分然后贪心判断即可 对于第二问,设f[i][j]为已经到j为止砍了i段,转移的话从$$ f[i][j]=\sigema f[k][j-1] (s[j]-s[k-1]<=ans) 这里 ...

  8. 1044: [HAOI2008]木棍分割

    1044: [HAOI2008]木棍分割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2161  Solved: 779[Submit][Statu ...

  9. 【BZOJ】1044: [HAOI2008]木棍分割 二分+区间DP

    链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1044 Description 有n根木棍, 第i根木棍的长度为Li,n根木棍依次连结了一起, ...

  10. 【BZOJ】1044: [HAOI2008]木棍分割(二分+dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1044 如果只求最大的最小,,直接二分就行了...可是要求方案.. 好神! 我竟然想不到! 因为我们得 ...

随机推荐

  1. Dynamic Web Project创建及版本修改的问题

    java项目中,若切换服务器,经常会涉及到动态web模块版本的问题.      比如:新建了web项目,开始使用tomcat服务器,但是后来使用jboss服务器,就会出现:Project facet ...

  2. js如何将纯数字字符串转换为long型

    1.js如何将纯数字字符串转换为long型? js 中 int的存储位数?最大十进制数表示是多少? 精度http://www.jb51.net/article/59808.htm 整数(不使用小数点或 ...

  3. 文本分析工具awk简单示例

    先创建一个文件:vim hi 取第2个字段和第3个字段: awk '{print $2,$3}' hi     注意{}中的,逗号会在输出的时候转变为空格 加入字符说明: 显示整行: 指定字段分隔符: ...

  4. KMP串匹配算法解析与优化

    朴素串匹配算法说明 串匹配算法最常用的情形是从一篇文档中查找指定文本.需要查找的文本叫做模式串,需要从中查找模式串的串暂且叫做查找串吧. 为了更好理解KMP算法,我们先这样看待一下朴素匹配算法吧.朴素 ...

  5. Oracle与SQL Server事务处理的比较

    事务处理是所有大型数据库产品的一个关键问题,各数据库厂商都在这个方面花费了很大精力,不同的事务处理方式会导致数据库性能和功能上的巨大差异.事务处理也是数据库管理员与数据库应用程序开发人员必须深刻理解的 ...

  6. GetType() 和typeof() 的区别

    GetType() 非强类型,支持跨程序集发射,用来支持动态引用, A obja=new A(); Type t=obja.GetType() typeof() 强类型,静态的 Type t=type ...

  7. sql server 跨库操作

    SELECT *FROM OPENDATASOURCE('SQLOLEDB','Data Source=sql服务器名;User ID=用户名;Password=密码;').PersonDb.dbo. ...

  8. jquery 匹配select下拉框与列表框

    今天工作中用到 GrapyCity 的 wijmo ui 控件. 要给系统中所有类型的控件加统一样式 用法 $("input [type='text']").wijtext(); ...

  9. 第十一章 管理类型(In .net4.5) 之 管理对象的生命周期

    1. 概述 本章内容包括 管理非托管资源.使用IDisposable接口 以及 管理析构器和垃圾回收. 2. 主要内容 2.1 理解垃圾回收机制 ① 代码执行的时候,内存中有两个地方存放数据项:堆 和 ...

  10. linux kernel 0.11 head

    head的作用 注意:bootsect和setup汇编采用intel的汇编风格,而在head中,此时已经进入32位保护模式,汇编的采用的AT&T的汇编语言,编译器当然也就变成对应的编译和连接器 ...