http://blog.csdn.net/qq564690377/article/details/17082055

做的时候觉得明显是费用流,但是真的不知道怎么建图,看了上面的博客会稍微清晰一点。后面再补一点细节吧,然后发现这道题用自己平时的费用流模板是水不过去的,所以找了份别人AC的代码弄了个zkw最小费用流的模板上来,算是存下模板吧。

补充点个人的理解吧,个人的网络流做的题还是太少了,所以想不到怎么建模,其实感觉上还是比较直接的一个行列二分图建模。首先就是枚举最后有多少个1剩下来,假设当前的已经有cur个1了,然后我要达到tot,那么每一行应该有tot/n个,每一列应该有tot/m个,所以我们可以对每行建一个点,对每列建一个点,从源点到行的点限流tot/n,列的点到汇点限流tot/m,这样的话当满流的时候其实就能保证每一行的1相等,每一列的1也相等。然后建边的时候就是每个处于(i,j)的点和i行j列的点连一条边,假设原本是1就费用为0,原本是0就费用为1.那么按照这样跑一遍费用流,费用x就是图里面需要由0变成1的点的个数,我们只需要再求出y,即图里由1变成0的个数就可以了。那么y等于多少呢? 不难发现图中多出来的1应该满足 x-y=tot-cur  所以y=x+cur-tot  所以最后的费用是x+y=2*x+cur-tot。

http://blog.sina.com.cn/s/blog_61034ad90100gwdw.html

上面的博客研究了spfa的网络流和zkw的网络流,可能zkw网络流会比较适用在二分图,稠密图上吧。

#pragma warning(disable:4996)
#include <iostream>
#include <cstring>
#include <string>
#include <vector>
#include <cmath>
#include <algorithm>
#include <cstdio>
#include <queue>
using namespace std; #define ll long long
#define eps 1e-8
#define maxn 100
#define maxe 4000
#define inf 0x3f3f3f3f
using namespace std; char b[50][50];
int n, m; /*int siz; struct Edge{
int u, v, nxt, cap, cost;
}edge[maxe];
int head[maxn]; struct MinCostMaxFlow
{
queue<int> que;
int add; // edges number
int vn; // total vertex number
int cost[maxn], in[maxn], pre[maxn];
bool vis[maxn];
void init(){
add = 0; vn = siz + 10; memset(head, -1, sizeof(head));
while (!que.empty()) que.pop();
}
void insert(int u, int v, int w, int c){
edge[add].u = u; edge[add].v = v; edge[add].cap = w; edge[add].cost = c;
edge[add].nxt = head[u]; head[u] = add++;
edge[add].u = v; edge[add].v = u; edge[add].cap = 0; edge[add].cost = -c;
edge[add].nxt = head[v]; head[v] = add++;
} bool spfa(int s, int e){
memset(cost, 0x3f3f3f3f, sizeof(cost));
memset(in, 0, sizeof(in));
memset(vis, 0, sizeof(vis));
cost[s] = 0; pre[s] = -1;
que.push(s); vis[s] = true; in[s]++;
while (!que.empty()){
int u = que.front(); que.pop();
vis[u] = false;
for (int i = head[u]; i != -1; i = edge[i].nxt){
int v = edge[i].v;
if (edge[i].cap > 0 && cost[v] > cost[u] + edge[i].cost){
cost[v] = cost[u] + edge[i].cost; pre[v] = i;
if (!vis[v]){
que.push(v); vis[v] = true; in[v]++;
if (in[v] > vn) return false;
}
}
}
}
if (cost[e] < inf) return true;
else return false;
}
int mincostmaxflow(int s, int e){
int mincost = 0, maxflow = 0;
while (spfa(s, e)){
int flow = inf;
for (int i = pre[e]; i != -1; i = pre[edge[i].u]){
flow = min(flow, edge[i].cap);
}
maxflow += flow;
for (int i = pre[e]; i != -1; i = pre[edge[i].u]){
edge[i].cap -= flow;
edge[i ^ 1].cap += flow;
}
mincost += cost[e] * flow;
}
return mincost;
}
}net;
*/ struct Edge
{
int u, v, cap, cost, nxt;
Edge(int _u, int _v, int _cap, int _cost, int _nxt) :
u(_u), v(_v), cap(_cap), cost(_cost), nxt(_nxt){}
Edge(){};
}edge[maxe];
int head[maxn]; struct ZKW_MinCostMaxFlow {
int add;
int cur[maxn];
int dis[maxn];
bool inq[maxn];
queue<int> q;
bool vis[maxn]; int ss, tt, n;
int min_cost, max_flow; void init() {
memset(head, -1, sizeof(head));
add = 0;
} void insert(int u, int v, int cp, int ct) {
edge[add] = Edge(u, v, cp, ct, head[u]);
head[u] = add++;
edge[add] = Edge(v, u, 0, -ct, head[v]);
head[v] = add++;
} int aug(int u, int flow) {
if (u == tt) return flow;
vis[u] = true;
for (int i = cur[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if (edge[i].cap && !vis[v] && dis[u] == dis[v] + edge[i].cost) {
int tmp = aug(v, min(flow, edge[i].cap));
edge[i].cap -= tmp;
edge[i ^ 1].cap += tmp;
cur[u] = i;
if (tmp) return tmp;
}
}
return 0;
}
bool modify_label() {
int d = inf;
for (int u = 0; u < n; u++) if (vis[u])
for (int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v;
if (edge[i].cap && !vis[v])
d = min(d, dis[v] + edge[i].cost - dis[u]);
}
if (d == inf) return false;
for (int i = 0; i < n; ++i) if (vis[i]) {
vis[i] = false;
dis[i] += d;
}
return true;
} pair<int, int> mincostmaxflow(int s, int t, int _n) {
ss = s, tt = t, n = _n;
min_cost = max_flow = 0;
for (int i = 0; i < n; i++) dis[i] = 0;
while (true) {
for (int i = 0; i < n; i++) cur[i] = head[i];
while (true) {
for (int i = 0; i < n; i++) vis[i] = 0;
int tmp = aug(s, inf);
if (tmp == 0) break;
max_flow += tmp;
min_cost += tmp * dis[ss];
}
if (!modify_label()) break;
}
return make_pair(min_cost, max_flow);
}
}net; int main()
{
int T; cin >> T; int ca = 0;
while (T--){
scanf("%d%d", &n, &m);
for (int i = 0; i < n; i++) scanf("%s", b[i]);
int tot = 0;
for (int i = 0; i < n; ++i){
for (int j = 0; j < m; ++j){
if (b[i][j] == '1') tot++;
}
}
int ans = min(n*m - tot, tot);
for (int i = 1; i <= n*m; ++i){
if (i%n != 0 || i%m != 0) continue;
if (abs(tot - i) >= ans) continue;
net.init();
int src = n + m, sink = src + 1;
for (int k = 0; k < n; ++k){
net.insert(src, k, i / n, 0);
}
for (int k = n; k < n + m; k++){
net.insert(k, sink, i / m, 0);
}
for (int x = 0; x < n; x++){
for (int j = 0; j < m; j++){
if (b[x][j] == '1') net.insert(x, j + n, 1, 0);
else net.insert(x, j + n, 1, 1);
}
}
ans = min(ans, net.mincostmaxflow(src, sink,sink+1).first * 2 + tot - i);
}
printf("Case %d: %d\n", ++ca, ans);
}
return 0;
}

uva12534 Binary Matrix 2(最小费用最大流)的更多相关文章

  1. [poj] 3422 Kaka's Matrix Travels || 最小费用最大流

    原题 给一个N*N的方阵,从[1,1]到[n,n]走K次,走过每个方格加上上面的数,然后这个格上面的数变为0.求可取得的最大的值. 要求最大值,所以把边权全为负跑最小费用即可.因为只有第一次经过该点的 ...

  2. UVa11082 Matrix Decompressing(最小费用最大流)

    题目大概有一个n*m的矩阵,已知各行所有数的和的前缀和和各列所有数的和的前缀和,且矩阵各个数都在1到20的范围内,求该矩阵的一个可能的情况. POJ2396的弱化版本吧..建图的关键在于: 把行.列看 ...

  3. hdu 2686 Matrix 最小费用最大流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2686 Yifenfei very like play a number game in the n*n ...

  4. POJ 3422 Kaka&#39;s Matrix Travels (最小费用最大流)

    POJ 3422 Kaka's Matrix Travels 链接:http://poj.org/problem? id=3422 题意:有一个N*N的方格,每一个方格里面有一个数字.如今卡卡要从左上 ...

  5. POJ 3422 Kaka's Matrix Travels 【最小费用最大流】

    题意: 卡卡有一个矩阵,从左上角走到右下角,卡卡每次只能向右或者向下.矩阵里边都是不超过1000的正整数,卡卡走过的元素会变成0,问卡卡可以走k次,问卡卡最多能积累多少和. 思路: 最小费用最大流的题 ...

  6. poj3422 Kaka's Matrix Travels(最小费用最大流问题)

    /* poj3422 Kaka's Matrix Travels 不知道 k次 dp做为什么不对??? 看了大牛的代码,才知道还可以这样做! 开始没有理解将a 和 a‘ 之间建立怎样的两条边,导致程序 ...

  7. hdu 2686 Matrix && hdu 3367 Matrix Again (最大费用最大流)

    Matrix Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  8. HDU3376 最小费用最大流 模板2

    Matrix Again Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)To ...

  9. hdu 3395(KM算法||最小费用最大流(第二种超级巧妙))

    Special Fish Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tota ...

随机推荐

  1. JQuery中ajax跨域问题

    var url = "http://apis.juhe.cn/idcard/index?key=e0a6277420506b2816b82f7d7821976c&cardno=&qu ...

  2. MIFARE系列2《非接触卡标准》

    根据信号发送和接收方式的不同,ISO/IEC14443-3定义了TYPEA.TYPEB两种卡型.它们的不同主要在于载波的调制深度及二进制数的编码方式.从读写机具向卡传送信号时,二者是通过13.56Mh ...

  3. jdbc 连接 oracle rac

    jdbc 连接 oracle rac 的连接串如下:   jdbc:oracle:thin:@(DESCRIPTION =(ADDRESS = (PROTOCOL = TCP)(HOST = 192. ...

  4. Windows Phone Emoji

    今天基于项目的需要,研究了一下windows phone 8里面的Emoji实现.如果大家用过wp版本的微信或者qq,相比一定对它里面的表情符号影像深刻吧!是的,只要你细看一下,其实在微信里面包括两种 ...

  5. OpenStack:安装Horizon

    1. 安装:# apt-get install memcached libapache2-mod-wsgi openstack-dashboard!Note for Ubuntu users# apt ...

  6. DataView usage combind with event and ViewModel From ERP-DEV

    reflesh the selected item in DataView when we use DataView to display a set of data. Generally, we b ...

  7. Android Jni变量对照表

    字符 Java类型 C类型 V      void            void Z       jboolean     boolean I        jint              in ...

  8. QT 按钮(4种样式)

    // 1.正常  btnNormal_ = new QPushButton("Normal Button", this);  // 2.可停驻  btnCheck_ = new Q ...

  9. DF与EF的区别

    DF:专有文件 EF:基本文件 1.EF没有文件名,只有FID(文件标识符) 2.DF有文件名,又有FID,因此COS可以根据文件名来访问DF

  10. C#制作高仿360安全卫士窗体(三)

    距上篇C#制作高仿360安全卫士窗体(二)也将近一个多月了,这个月事情还是像往常一样的多.不多我也乐在其中,毕竟我做的是我喜欢做的东西.今天特地抽空把怎么制作文本框写一下.同时也希望有爱好这些玩意的同 ...