Machine Schedule

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8404    Accepted Submission(s): 4215

Problem Description
As
we all know, machine scheduling is a very classical problem in computer
science and has been studied for a very long history. Scheduling
problems differ widely in the nature of the constraints that must be
satisfied and the type of schedule desired. Here we consider a 2-machine
scheduling problem.

There are two machines A and B. Machine A
has n kinds of working modes, which is called mode_0, mode_1, …,
mode_n-1, likewise machine B has m kinds of working modes, mode_0,
mode_1, … , mode_m-1. At the beginning they are both work at mode_0.

For
k jobs given, each of them can be processed in either one of the two
machines in particular mode. For example, job 0 can either be processed
in machine A at mode_3 or in machine B at mode_4, job 1 can either be
processed in machine A at mode_2 or in machine B at mode_4, and so on.
Thus, for job i, the constraint can be represent as a triple (i, x, y),
which means it can be processed either in machine A at mode_x, or in
machine B at mode_y.

Obviously, to accomplish all the jobs, we
need to change the machine's working mode from time to time, but
unfortunately, the machine's working mode can only be changed by
restarting it manually. By changing the sequence of the jobs and
assigning each job to a suitable machine, please write a program to
minimize the times of restarting machines.

 
Input
The
input file for this program consists of several configurations. The
first line of one configuration contains three positive integers: n, m
(n, m < 100) and k (k < 1000). The following k lines give the
constrains of the k jobs, each line is a triple: i, x, y.

The input will be terminated by a line containing a single zero.

 
Output
The output should be one integer per line, which means the minimal times of restarting machine.
 
Sample Input
5 5 10
0 1 1
1 1 2
2 1 3
3 1 4
4 2 1
5 2 2
6 2 3
7 2 4
8 3 3
9 4 3
0
 
Sample Output
3
 
Source
 
题意:
有两台机器,各有n和m个工作模式,k个任务,i x y,第i个任务可以由第一台机器的x模式执行或者第2台机器的y模式执行,每个机器如果换了一个模式就要重新启动,问最少的重启次数,最开始都在0模式
从零模式开始不用启动即第一次不用启动。
代码:
 // 最小点覆盖模板  一个模式可以同时执行多个任务。这就是最小点覆盖掉所有的边。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int mp[][],vis[],link[];
int n,Mu,Mv,m,k;
int dfs(int x)
{
for(int i=;i<Mv;i++)
{
if(!vis[i]&&mp[x][i])
{
vis[i]=;
if(link[i]==-||dfs(link[i]))
{
link[i]=x;
return ;
}
}
}
return ;
}
int Maxcon()
{
int ans=;
memset(link,-,sizeof(link));
for(int i=;i<Mu;i++)
{
memset(vis,,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
int main()
{
int a,b,c;
while(scanf("%d",&n)&&n)
{
scanf("%d%d",&m,&k);
memset(mp,,sizeof(mp));
while(k--){
scanf("%d%d%d",&c,&a,&b);
if(a!=&&b!=) mp[a][b]=; //0模式不用
}
Mu=n;Mv=m; //左右集合
printf("%d\n",Maxcon());
}
return ;
}

*HDU1150 二分图的更多相关文章

  1. HDU1150 Machine Schedule(二分图最大匹配、最小点覆盖)

    As we all know, machine scheduling is a very classical problem in computer science and has been stud ...

  2. hdu-1150(二分图+匈牙利算法)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 思路:题目中给出两个机器A,B:给出k个任务,每个任务可以由A的x状态或者B的y状态来完成. 完 ...

  3. 【hdu1150】【Machine Schedule】二分图最小点覆盖+简单感性证明

    (上不了p站我要死了,侵权度娘背锅) 题目大意 有两台机器A和B以及N个需要运行的任务.每台机器有M种不同的模式,而每个任务都恰好在一台机器上运行.如果它在机器A上运行,则机器A需要设置为模式ai,如 ...

  4. 「日常温习」Hungary算法解决二分图相关问题

    前言 二分图的重点在于建模.以下的题目大家可以清晰的看出来这一点.代码相似度很高,但是思路基本上是各不相同. 题目 HDU 1179 Ollivanders: Makers of Fine Wands ...

  5. HDU-1150-MachineSchedule(二分图匹配)

    链接:https://vjudge.net/problem/HDU-1150#author=0 题意: 在一个工厂,有两台机器A,B生产产品.A机器有n种工作模式(模式0,模式1....模式n-1). ...

  6. C - NP-Hard Problem(二分图判定-染色法)

    C - NP-Hard Problem Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:262144 ...

  7. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  8. bzoj4025 二分图

    支持加边和删边的二分图判定,分治并查集水之(表示我的LCT还很不熟--仅仅停留在极其简单的模板水平). 由于是带权并查集,并且不能路径压缩,所以对权值(到父亲距离的奇偶性)的维护要注意一下. 有一个小 ...

  9. hdu 1281 二分图最大匹配

    对N个可以放棋子的点(X1,Y1),(x2,Y2)......(Xn,Yn);我们把它竖着排看看~(当然X1可以对多个点~) X1   Y1 X2   Y2 X3   Y3 ..... Xn   Yn ...

随机推荐

  1. 日期控件jsdate用法注意事项

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  2. 【荐】PHP Session和Cookie,Session阻塞,Session垃圾回收,Redis共享Session,不推荐Memcached保存Session

    什么是 Session 在 web 应用开发中,Session 被称为会话.主要被用于保存某个访问者的数据. 由于 HTTP 无状态的特点,服务端是不会记住客户端的,对服务端来说,每一个请求都是全新的 ...

  3. CentOS6.3安装MongoDB2.2 及 安装PHP的MongoDB客户端

    下载源码:(放到 /usr/local/src 目录下) 到官网 http://www.mongodb.org/downloads 下载源码 https://fastdl.mongodb.org/li ...

  4. 关于int,integer初始值问题

  5. 十六天 css汇总、js汇总、dom汇总

    1.css补充之  后台管理界面  顶部导航栏.左边菜单栏.右边内容栏固定在屏幕相应位置 会有上下左右滚动条,设定窗口最小值,使页面不乱.注意overflow:auto要与position:absol ...

  6. win8环境安装.net3.5

    材料:光盘镜像(必须原版镜像) 1,以管理员身份运行CMD 2,打开镜像,找到盘符比如我的是G盘 3, 输入 X代表你的ISO镜像的盘符 dism.exe /online /enable-featur ...

  7. oracle导入导出数据

    导入数据,cmd   imp 导出数据,cmd   exp

  8. 解决linux系统启动之:unexpected inconsistency:RUN fsck

    现象: 虚拟机在启动过程中提示: unexpected inconsistency;RUN fsck MANUALLY 原因分析: 1.由于意外关机导致的文件系统问题 解决方法: 方法1: 输入ROO ...

  9. Spring + Jedis集成Redis(单例redis数据库)

    这几天没事,就把之前学习的redis代码整理一遍,废话不多说,上步骤. 1.pom.xml引入资源: <dependency> <groupId>org.springframe ...

  10. PHP字符串函数

    php字符串处理函数大全 addcslashes — 为字符串里面的部分字符添加反斜线转义字符addslashes — 用指定的方式对字符串里面的字符进行转义bin2hex — 将二进制数据转换成十六 ...