「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究
Solution
子任务2
暴力,用\(cnt\)记录每种权值出现次数。
子任务3
这不是一个尺取吗...
然后用multiset维护当前的区间,动态加,删点即可。
子任务4
目前可以支持在\(o(log(n) )\)的时间里动态加,删单点了。
容易想到莫队。
直接用multiset维护复杂度\(o(n \sqrt n log(n))\)。(一脸不可过)
稍微优化一下
若使用cnt记录的话,是没法很好的删点的。
对于目前要处理的块\([l,r]\),询问右端点单调,没有删点的操作,需要删点操作的是左端点的块内移动。
事实上,左端点的块内移动可以直接改为加入需要用到的点。
\(cnt\)统计\(r+1\)以后的点 ,cnt本身维护一个最大值MAX。加入块内的点 时,MAX不变,维护一个ANS。
这样就不需要删点了(加入的 块内的点 回滚一下即可)。
最终复杂度\(o(n \sqrt n)\)
Code
#include<bits/stdc++.h>
#define rep(q,a,b) for(int q=a,q##_end_=b;q<=q##_end_;++q)
#define dep(q,a,b) for(int q=a,q##_end_=b;q>=q##_end_;--q)
#define mem(a,b) memset(a,b,sizeof a )
#define debug(a) cerr<<#a<<' '<<a<<"___"<<endl
using namespace std;
void in(int &r) {
static char c;
r=0;
while(c=getchar(),!isdigit(c));
do r=(r<<1)+(r<<3)+(c^48);
while(c=getchar(),isdigit(c));
}
const int mn=100005;
int val[mn],mid[mn],n,Q;
int cnt[mn];
namespace something_only_for_fc{
void solve(){
int l,r;
while(Q--){
in(l),in(r);
long long Max=0;
rep(q,l,r)++cnt[val[q]];
rep(q,l,r)Max=max(Max,1LL*cnt[val[q]]*mid[val[q]]);
rep(q,l,r)--cnt[val[q]];
printf("%lld\n",Max);
}
}
}
struct node{
int l,r,id;
bool operator <(const node &A)const{
return l==A.l?r<A.r:l<A.l;
}
}qr[mn];
long long ans[mn];
namespace something_value_25pts{
multiset<long long> have_val;
multiset<long long>::iterator it;
void remove(long long v){
it=have_val.find(v);
if(it!=have_val.end())have_val.erase(it);
}
long long Max(){
it=have_val.end(),--it;
return (*it);
}
void solve(){
int now=1;
int l=1;
for(int r=1;r<=n;++r){
if(cnt[val[r]])remove(1LL*cnt[val[r]]*mid[val[r]]);
++cnt[val[r]];
have_val.insert(1LL*cnt[val[r]]*mid[val[r]]);
if(now<=Q&&r==qr[now].r){
while(l<qr[now].l){
remove(1LL*cnt[val[l]]*mid[val[l]]);
--cnt[val[l]];
if(cnt[val[l]])have_val.insert(1LL*cnt[val[l]]*mid[val[l]]);
++l;
}
ans[qr[now].id]=Max();
++now;
}
}
rep(q,1,Q)printf("%lld\n",ans[q]);
}
}
bool pts_25_check(){
rep(q,2,Q)if(qr[q].l==qr[q-1].l)return 0;
return 1;
}
namespace something_just_for_fun{
vector<node> son[400];
long long Max,an;
void add(int v){
++cnt[v];
Max=max(Max,1LL*cnt[v]*mid[v]);
}
void mid_add(int v){
++cnt[v];
an=max(an,1LL*cnt[v]*mid[v]);
}
int now_r;
void move(int to){
rep(q,now_r+1,to)add(val[q]);
now_r=to;
}
bool cmp(node a,node b){
return a.r<b.r;
}
void get(int x,int now){
if(!son[x].size())return;
now_r=now,Max=0;
rep(q,1,n)cnt[q]=0;
sort(son[x].begin(),son[x].end(),cmp);
rep(q,0,(int)son[x].size()-1){
if(son[x][q].r<=now){
an=0;
rep(w,son[x][q].l,son[x][q].r)mid_add(val[w]);
rep(w,son[x][q].l,son[x][q].r)--cnt[val[w]];
}else{
move(son[x][q].r);
an=Max;
rep(w,son[x][q].l,now)mid_add(val[w]);
rep(w,son[x][q].l,now)--cnt[val[w]];
}
ans[son[x][q].id]=an;
}
}
void solve(){
int K=sqrt(n)+1;
int lim=n/K;
rep(q,1,Q)son[qr[q].l/K].push_back(qr[q]);
rep(q,0,lim)get(q,min(n,(q+1)*K-1));
rep(q,1,Q)printf("%lld\n",ans[q]);
}
}
int main(){
freopen("history.in","r",stdin);
freopen("history.out","w",stdout);
in(n),in(Q);
rep(q,1,n)in(val[q]),mid[q]=val[q];
sort(mid+1,mid+n+1);
rep(q,1,n)val[q]=lower_bound(mid+1,mid+n+1,val[q])-mid;
if(n<=5000&&Q<=5000)something_only_for_fc::solve();
else{
rep(q,1,Q)in(qr[q].l),in(qr[q].r),qr[q].id=q;
sort(qr+1,qr+Q+1);
if(pts_25_check())something_value_25pts::solve();
else something_just_for_fun::solve();
}
return 0;
}
「JOISC 2014 Day1」 历史研究的更多相关文章
- 「JOISC 2014 Day1」历史研究 --- 回滚莫队
题目又臭又长,但其实题意很简单. 给出一个长度为\(N\)的序列与\(Q\)个询问,每个询问都对应原序列中的一个区间.对于每个查询的区间,设数\(X_{i}\)在此区间出现的次数为\(Sum_{X_{ ...
- 「题解」「JOISC 2014 Day1」历史研究
目录 题目 考场思考 思路分析及标程 题目 点这里 考场思考 大概是标准的莫队吧,离散之后来一个线段树加莫队就可以了. 时间复杂度 \(\mathcal O(n\sqrt n\log n)\) . 然 ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
- 【LOJ】#3032. 「JOISC 2019 Day1」馕
LOJ#3032. 「JOISC 2019 Day1」馕 处理出每个人把馕切成N段,每一段快乐度相同,我们选择第一个排在最前的人分给他的第一段,然后再在未选取的的人中选一个第二个排在最前的切一下,并把 ...
- 【LOJ】#3031. 「JOISC 2019 Day1」聚会
LOJ#3031. 「JOISC 2019 Day1」聚会 听说随机可过? 我想了很久想了一个不会被卡的做法,建出前\(u - 1\)个点的虚树,然后找第\(u\)个点的插入位置,就是每次找一条最长链 ...
- 【LOJ】#3030. 「JOISC 2019 Day1」考试
LOJ#3030. 「JOISC 2019 Day1」考试 看起来求一个奇怪图形(两条和坐标轴平行的线被切掉了一个角)内包括的点个数 too naive! 首先熟练的转化求不被这个图形包含的个数 -- ...
- loj2880「JOISC 2014 Day3」稻草人
题目链接:bzoj4237 loj2880 考虑\(cdq\)分治,按\(x\)坐标排序,于是问题变成统计左下角在\([l,mid]\),右上角在\([mid+1,r]\)的矩形数量 我们先考虑固 ...
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)
题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...
随机推荐
- matplotlib 高阶之Transformations Tutorial
目录 Data coordinates Axes coordinates Blended transformations 混合坐标系统 plotting in physical units 使用off ...
- matplotlib 进阶之Legend guide
目录 matplotlib.pyplot.legend 方法1自动检测 方法2为现有的Artist添加 方3显示添加图例 控制图例的输入 为一类Artist设置图例 Legend 的位置 loc, b ...
- [opencv]KAZE、AKAZE特征检测、匹配与对象查找
AkAZE是KAZE的加速版 与SIFT,SUFR比较: 1.更加稳定 2.非线性尺度空间 3.AKAZE速度更加快 4.比较新的算法,只有Opencv新的版本才可以用 AKAZE局部匹配介绍 1.A ...
- MongoDB分片集群机制及原理
1. MongoDB常见的部署架构 * 单机版 * 复制集 * 分片集群 2. 为什么要使用分片集群 * 数据容量日益增大,访问性能日渐下降,怎么破? * 新品上线异常火爆,如何支撑更多用户并发? * ...
- String 既然能做性能调优,我直呼内行
码哥,String 还能优化啥?你是不是框我? 莫慌,今天给大家见识一下不一样的 String,从根上拿捏直达 G 点. 并且码哥分享一个例子:通过性能调优我们能实现百兆内存轻松存储几十 G 数据. ...
- select 1 from 是什么意思?有什么作用?
参考:https://www.douban.com/note/518373959/ 一.select 1 from 的作用1.select 1 from mytable 与 select anycol ...
- Linux的六种查找命令
http://www.ruanyifeng.com/blog/2009/10/5_ways_to_search_for_files_using_the_terminal.html 1. find fi ...
- 详谈 Java工厂 ---工厂方法模式
1.前言 有个场景,消费者需要付钱,有可能是使用支付宝.微信.银行卡,那么该怎么选择呢? 是不是想到了使用用if else判断?还是使用switch? 一个地方这样写还好,如果有很多这样的业务,难道都 ...
- TestNG 运行Webdriver测试用例
1.单击选中的新建工程的名称,按Ctrl+N组合键,弹出对话框选择"TestNG"下的"TestNG class"选项,点击"next" 2 ...
- kafka学习笔记(七)kafka的状态机模块
概述 这一篇随笔介绍kafka的状态机模块,Kafka 源码中有很多状态机和管理器,比如之前我们学过的 Controller 通道管理器 ControllerChannelManager.处理 Con ...