题目描述

题目链接

思路

由于要统计每个字符串的次数,以及字典序,所以,我们需要把用户每次add的字符串封装成一个对象,这个对象中包括了这个字符串和这个字符串出现的次数。

假设我们封装的对象如下:

public class Word {
public String value; // 对应的字符串
public int times; // 对应的字符串出现的次数 public Word(String v, int t) {
value = v;
times = t;
}
}

topk的要求是: 出现次数多的排前面,如果次数一样,字典序小的排前面

很容易想到用有序表+比较器来做。

比较器的规则定义成和topk的要求一样,然后把元素元素加入使用比较器的有序表中,如果要返回topk,直接从这个有序表弹出返回给用户即可。比较器的定义如下:

public class TopKComparator implements Comparator<Word> {
@Override
public int compare(Word o1, Word o2) {
// 次数大的排前面,次数一样字典序在小的排前面
return o1.times == o2.times ? o1.value.compareTo(o2.value) : (o2.times - o1.times);
}
}

有序表配置这个比较器即可

TreeSet<Word>  topK = new TreeSet<>(new TopKComparator());

所以topk()方法很简单,只需要从有序表里面把元素拿出来返回给用户即可

public List<String> topk() {
List<String> result = new ArrayList<>();
for (Word word : topK) {
result.add(word.value);
}
return result;
}

时间复杂度 O(K)

以上步骤不复杂,接下来是add的逻辑,add的每次操作都有可能对前面我们设置的topK有序表造成影响,

所以在每次add操作的时候需要有一个机制可以告诉topK这个有序表,需要淘汰什么元素,需要新加哪个元素,让topK这个有序表时时刻刻只存topk个元素,

这样就可以确保topK()方法比较单纯,时间复杂度保持在O(K)

所以接下来的问题是:如何告诉topK这个有序表,需要淘汰什么元素,需要新加哪个元素?

我们可以通过堆来维持一个门槛,堆顶元素表示最先要淘汰的元素,所以堆中的比较策略定为:

次数从小到大,字典序从大到小,这样,堆顶元素永远是:次数相对更少或者字典序相对更大的那个元素。所以如果某个时刻要淘汰一个元素,从堆顶拿出来,然后再到topK这个有序表中查询是否有这个元素,有的话就从topK这个有序表中删除这个元素即可。

private class ThresholdComparator implements Comparator<Word> {

    @Override
public int compare(Word o1, Word o2) {
// 设置堆门槛,堆顶元素最先被淘汰
return o1.times == o2.times ? o2.value.compareTo(o2.value) : (o1.times - o2.times);
}
}

如果使用Java自带的PriorityQueue做这个堆,无法实现动态调整堆的功能,因为我们需要把次数增加的字符串(Word)在堆上动态调整,自带的PriorityQueue无法实现这个功能,PriorityQueue只能支持每次新增或者删除一个节点的时候,动态调整堆(

O(logN),但是如果堆中的节点变化了,PriorityQueue无法自动调整成堆结构,所以我们需要实现一个增强堆,用于节点变化的时候可以动态调整堆结构(保持O(logN)复杂度)。

加强堆的核心是增加了一个哈希表,

private Map<Word, Integer> indexMap;

用于存放每个节点所在堆上的位置,在节点变化的时候,可以通过哈希表查出这个节点所在的位置,然后从所在位置进行heapify/heapInsert操作,且这两个操作只会走一个,

这样就动态调整好了这个堆结构,以下resign方法就是完成这个工作

public void resign(Word word) {
int i = indexMap.get(word);
heapify(i);
heapInsert(i);
}

除了这个resign方法,自定义堆中的其他方法和常规的堆没有区别,在每次进行heapify和heapInsert操作的时候,如果涉及到交换两个元素,需要将indexMap中的两个元素的位置也互换

private void swap(int i, int j) {
if (i != j) {
indexMap.put(words[i], j);
indexMap.put(words[j], i);
Word tmp = words[i];
words[i] = words[j];
words[j] = tmp;
}
}

由于自定义堆和有序表topk只存top k个数据,所以TopK结构中还需要一个哈希表来记录所有的字符串出现与否:

private Map<String, Word> map;

自此,TopK结构中的add方法需要的前置条件已经具备,整个add方法的流程如下:

完整代码

class TopK {
private TreeSet<Word> topK;
private Heap heap;
private Map<String, Word> map;
private int k; public TopK(int k) {
this.k = k;
topK = new TreeSet<>(new TopKComparator());
heap = new Heap(k, new ThresholdComparator());
map = new HashMap<>();
} public void add(String str) {
if (k == 0) {
return;
}
Word word = map.get(str);
if (word == null) {
// 新增元素
word = new Word(str, 1);
// 是否到达门槛可以替换堆中元素
if (heap.isReachThreshold(word)) {
if (heap.isFull()) {
Word toBeRemoved = heap.poll();
topK.remove(toBeRemoved);
}
heap.add(word);
topK.add(word);
}
} else {
if (heap.contains(word)) {
topK.remove(word);
word.times++;
topK.add(word);
heap.resign(word);
} else {
word.times++;
if (heap.isReachThreshold(word)) {
if (heap.isFull()) {
Word toBeRemoved = heap.poll();
topK.remove(toBeRemoved);
}
heap.add(word);
topK.add(word);
}
}
}
map.put(str, word);
} public List<String> topk() {
if (k == 0) {
return new ArrayList<>();
}
List<String> result = new ArrayList<>();
for (Word word : topK) {
result.add(word.value);
}
return result;
} private class Word {
public String value;
public int times; public Word(String v, int t) {
value = v;
times = t;
}
} private class TopKComparator implements Comparator<Word> {
@Override
public int compare(Word o1, Word o2) {
// 次数大的排前面,次数一样字典序在小的排前面
return o1.times == o2.times ? o1.value.compareTo(o2.value) : (o2.times - o1.times);
}
} private class ThresholdComparator implements Comparator<Word> { @Override
public int compare(Word o1, Word o2) {
// 设置堆门槛,堆顶元素最先被淘汰
return o1.times == o2.times ? o2.value.compareTo(o1.value) : (o1.times - o2.times);
}
} private class Heap {
private Word[] words;
private Comparator<Word> comparator;
private Map<Word, Integer> indexMap; public Heap(int k, Comparator<Word> comparator) {
words = new Word[k];
indexMap = new HashMap<>();
this.comparator = comparator;
} public boolean isEmpty() {
return indexMap.isEmpty();
} public boolean isFull() {
return indexMap.size() == words.length;
} public boolean isReachThreshold(Word word) {
if (isEmpty() || indexMap.size() < words.length) {
return true;
} else {
if (comparator.compare(words[0], word) < 0) {
return true;
}
return false;
}
} public void add(Word word) {
int size = indexMap.size();
words[size] = word;
indexMap.put(word, size);
heapInsert(size); } private void heapify(int i) {
int size = indexMap.size();
int leftChildIndex = 2 * i + 1;
while (leftChildIndex < size) {
Word weakest = leftChildIndex + 1 < size
? (comparator.compare(words[leftChildIndex], words[leftChildIndex + 1]) < 0
? words[leftChildIndex]
: words[leftChildIndex + 1])
: words[leftChildIndex];
if (comparator.compare(words[i], weakest) < 0) {
break;
}
int weakestIndex = weakest == words[leftChildIndex] ? leftChildIndex : leftChildIndex + 1;
swap(weakestIndex, i);
i = weakestIndex;
leftChildIndex = 2 * i + 1;
}
} public void resign(Word word) {
int i = indexMap.get(word);
heapify(i);
heapInsert(i);
} private void heapInsert(int i) {
while (comparator.compare(words[i], words[(i - 1) / 2]) < 0) {
swap(i, (i - 1) / 2);
i = (i - 1) / 2;
}
} public boolean contains(Word word) {
return indexMap.containsKey(word);
} public Word poll() {
Word result = words[0];
swap(0, indexMap.size() - 1);
indexMap.remove(result);
heapify(0);
return result;
} private void swap(int i, int j) {
if (i != j) {
indexMap.put(words[i], j);
indexMap.put(words[j], i);
Word tmp = words[i];
words[i] = words[j];
words[j] = tmp;
}
}
}
}

复杂度

add方法,复杂度O(log K)

topk方法,复杂度O(K)

更多

算法和数据结构笔记

参考资料

LintCode 550 · Top K Frequent Words II的更多相关文章

  1. [LeetCode] Top K Frequent Elements 前K个高频元素

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  2. 347. Top K Frequent Elements

    Given a non-empty array of integers, return the k most frequent elements. For example,Given [1,1,1,2 ...

  3. [LeetCode] Top K Frequent Words 前K个高频词

    Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted b ...

  4. C#版(打败99.28%的提交) - Leetcode 347. Top K Frequent Elements - 题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  5. [leetcode]692. Top K Frequent Words K个最常见单词

    Given a non-empty list of words, return the k most frequent elements. Your answer should be sorted b ...

  6. [leetcode]347. Top K Frequent Elements K个最常见元素

    Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...

  7. 最高频的K个单词 · Top K Frequent Words

    [抄题]: 给一个单词列表,求出这个列表中出现频次最高的K个单词. [思维问题]: 以为已经放进pq里就不能改了.其实可以改,利用每次取出的都是顶上的最小值就行了.(性质) 不知道怎么处理k个之外的数 ...

  8. Top K Frequent Elements 前K个高频元素

    Top K Frequent Elements 347. Top K Frequent Elements [LeetCode] Top K Frequent Elements 前K个高频元素

  9. 347. Top K Frequent Elements (sort map)

    Given a non-empty array of integers, return the k most frequent elements. Example 1: Input: nums = [ ...

随机推荐

  1. Spring Cloud Data Flow整合Cloudfoundry UAA服务做权限控制

    我最新最全的文章都在南瓜慢说 www.pkslow.com,欢迎大家来喝茶! 1 前言 关于Spring Cloud Data Flow这里不多介绍,有兴趣可以看下面的文章.本文主要介绍如何整合Dat ...

  2. Golang学习(用代码来学习) - 第二篇

    type Circle struct { radius float64 desc string } //定义结构体里面的方法 func (c Circle) getArea() float64 { r ...

  3. sleep、wait方法之间区别

    sleep.wait方法之间区别 1.所属的类不同 sleep是Thread类的静态方法,而wait是Object类的成员方法 2.锁机制不一样 sleep方法:会让出资源调度器为当前线程分配的时间片 ...

  4. 一个排序引发的BUG

    你好呀,我是why. 前两天在 Git 上闲逛的时候又不知不觉逛到 Dubbo 那里去了. 看了一下最近一个月的数据,社区活跃度还是很高的: 然后看了一下最新的 issue,大家提问都很积极. 其中看 ...

  5. No serializer found for class com.bean.user and no properties discovered to create BeanSerializer

    解决方法: 方法1:将bean目录下的实体类属性由private改为public(不推荐): 方法2:给实体类属性设置setter和getter方法(推荐使用).

  6. Spring Boot 无侵入式 实现RESTful API接口统一JSON格式返回

    前言 现在我们做项目基本上中大型项目都是选择前后端分离,前后端分离已经成了一个趋势了,所以总这样·我们就要和前端约定统一的api 接口返回json 格式, 这样我们需要封装一个统一通用全局 模版api ...

  7. 资源:Kafka消息队列下载路径

    Kafka下载路径 http://kafka.apache.org/downloads.html

  8. Quartz:Quartz添加事务回滚报错

    自动任务类: @PersistJobDataAfterExecution @DisallowConcurrentExecution public class ReCodeBack implements ...

  9. PHP7与php5

    php在2015年12月03日发布了7.0正式版,带来了许多新的特性,以下是不完全列表: 性能提升:PHP7比PHP5.6性能提升了两倍. Improved performance: PHP 7 is ...

  10. 发送 email (转)

    <?phpnamespace app\common\controller;//基类class Email{ /* Public Variables */ var $smtp_port; var ...