摘要:RRCF是亚马逊提出的一个流式异常检测算法,是对孤立森林的改进,可对时序或非时序数据进行异常检测。本文是我从事AIOps研发工作时所做的基于RRCF的时序异常检测方案。

1.      数据格式

将时间序列以滑动窗口的形式转换为d维空间点。例如对于时间序列[1,2,3,4,5,6,7,8],d=5,那么可以将该时间序列转换为4个空间点[(1,2,3,4,5),(2,3,4,5,6),(3,4,5,6,7),(4,5,6,7,8)]。RCF以这样的高维空间点进行建模和检测。

2.      参数

点的维度d;

森林里树的数量tree_num;

单棵树的大小tree_size,即一棵树中包含多少点;

异常阈值thresh,即根据RCF异常得分判定是否异常的阈值。

3.      RCF原理

3.1树的构建

输入:数据集S,数据的维度d。

输出:一个包含branch和leaf的树。

  1. 计算每个维度上的跨度:
  2. 维度选择:按照的概率随机选择一个维度q.
  3. 切分点选择:对维度q,按照均匀概率分布,随机选择该维度的一个切分点.
  4. 维度q和对应切分点p构成一个branch.该branch将数据集S切分为两个子节点:
  5. 若或者集合中只有一个点,则将该子节点标记为这棵树的叶子节点(leaf)。
  6. 若或者集合中的点的数量大于1,则重复迭代1~5步骤。直到所有的点都变为叶子节点(leaf)。

3.2点的删除和插入

可以证明(论文引理4、6):

1、点的删除:将点p从由S构成的树T中删除,得到的树T’和直接从点集S-{p}构建的树T’’的概率分布是一致的。

2、点的插入:将点p插入到由S构成的树T中,得到的树T’和直接从点集S∪{p}构建的树T’’的概率分布是一致的。

这两个引理意味着,要计算点的加入和删除带来的树的复杂度的变化,只需要将点插入到原有的树中,或从原有的树中删除,而不需要使用新的点集重新构建树。这是RCF算法可用于流式检测的理论依据。

3.3异常得分codisp的计算

树的表示:树的每一个叶子节点都可以使用一个bit向量进行表示,如(0,0,1,0),0代表是父节点的左孩子,1代表是父节点的右孩子,同时向量的长度(即比特数)也就是该叶子节点在树中的深度。因此,一棵树可由所有叶子节点的bit向量来刻画。

树的复杂度:将树T的复杂度|M(T)|定义为,描述一棵树所需要的bit数。因此树的复杂度也等于所有叶子节点在树中的深度的和。

点的displacement:将一个叶子节点从树中删除,将导致树的结构发生改变,也会导致树的复杂度发生改变。将一个点删除后,树的复杂度的变化量(减少量)定义为该点的displacement。点的displacement表征了一个点的异常程度,displacement越大,该点越可能是异常。

点的co-displacement:displacement是计算删除一个点后树的复杂度的变化量,假如被删除的点是异常点,但如果树中还存和被删除点十分靠近的点,那么删除这个异常点将不会导致树的结构发生大的变化,因此其displacement就不会很大,因此很可能会把这个点误判为非异常点。这种现象在异常检测领域被称为masking。为解决masking问题,使用co-displacement作为点的异常评分。

在计算co-disp时,除了删除待检测目标点,还要考虑删除与目标点比较接近的点集,然后计算树的复杂度的变化量。

具体做法为(证明见引理2):

从待检测的叶子节点出发,沿着叶子节点到根节点的路径,分别尝试删除该叶子节点、该叶节点的父、祖父、曾祖父……节点,每删除一个节点(也就是一个点集),计算模型复杂度的变化量。该叶子节点的co-disp定义为所有变化量的最大值。

异常检测:检测时,将待检测点插入到森林中的每一棵树中,计算所有树对该点的异常评分co-disp,取其平均值作为该点的异常得分。

4.      异常检测过程

4.1热启动

4.1.1模型训练
  1. 将时间序列转化为空间点集S,且应保证|S|>=tree_num*tree_size;
  2. 如果|S|>tree_num*tree_size,对S进行下采样至 |S|=tree_num*tree_size;
  3. 对S进行分区,将其分为tree_num份,每份包含tree_size个点;
  4. 使用S的每一个分区构建一棵树,所有的树构成一个森林。
  5. 接收一个新点;
  6. 对该点是否异常进行判定:
4.1.2异常检测过程

i.            将新点插入到每一棵树中,并计算每一棵树对该点的异常评分co-disp;

ii.            计算所有树的异常评分的均值作为该点的异常得分;

iii.            异常得分与异常阈值比较,进行异常判定;

iv.            将新点从每棵树中删除;

  1. 将新点更新到模型中:

i.            随机选择一棵树;

ii.            将该树中最旧的点删除;

iii.            将新点插入该树;

4.2冷启动

也可以冷启动的方式运行,不事先训练模型,直接启动检测,为每个序列初始化一个模型(由若干空树构成的森林),随着数据的流入,树不断增长,直到达到设定的tree_size后,模型的大小不再改变,但仍然持续更新。这种工作方式可由引理6作支撑。过程类似:

a)       首先初始化tree_num棵空树;

b)      接收一个新点;

c)       对该点是否异常进行判定:

i.            将新点插入到每一棵树中,并计算每一棵树对该点的异常评分co-disp;

ii.            计算所有树的异常评分的均值作为该点的异常得分;

iii.            异常得分与异常阈值比较,进行异常判定;

iv.            将新点从每棵树中删除;

d)      将新点更新到模型中:

i.            随机选择一棵树;

ii.            如果树的大小已达到tree_size,则将该树中最旧的点删除,否则跳过;

iii.            将新点插入该树;

基于RRCF(robust random cut forest)的时间序列异常检测流程的更多相关文章

  1. 异常检测算法Robust Random Cut Forest(RRCF)关键定理引理证明

    摘要:RRCF是亚马逊发表的一篇异常检测算法,是对周志华孤立森林的改进.但是相比孤立森林,具有更为扎实的理论基础.文章的理论论证相对较为晦涩,且没给出详细的证明过程.本文不对该算法进行详尽的描述,仅对 ...

  2. 时间序列异常检测算法S-H-ESD

    1. 基于统计的异常检测 Grubbs' Test Grubbs' Test为一种假设检验的方法,常被用来检验服从正太分布的单变量数据集(univariate data set)\(Y\) 中的单个异 ...

  3. 基于变分自编码器(VAE)利用重建概率的异常检测

    本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立 ...

  4. AIOps探索:基于VAE模型的周期性KPI异常检测方法——VAE异常检测

    AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com   作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监 ...

  5. 异常检测-基于孤立森林算法Isolation-based Anomaly Detection-1-论文学习

    论文http://202.119.32.195/cache/10/03/cs.nju.edu.cn/da2d9bef3c4fd7d2d8c33947231d9708/tkdd11.pdf 1. INT ...

  6. 异常检测算法--Isolation Forest

    南大周志华老师在2010年提出一个异常检测算法Isolation Forest,在工业界很实用,算法效果好,时间效率高,能有效处理高维数据和海量数据,这里对这个算法进行简要总结. iTree 提到森林 ...

  7. 异常检测算法:Isolation Forest

    iForest (Isolation Forest)是由Liu et al. [1] 提出来的基于二叉树的ensemble异常检测算法,具有效果好.训练快(线性复杂度)等特点. 1. 前言 iFore ...

  8. 基于PySpark的网络服务异常检测系统 (四) Mysql与SparkSQL对接同步数据 kmeans算法计算预测异常

    基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans ...

  9. 基于PySpark的网络服务异常检测系统 阶段总结(二)

    在上篇博文中介绍了网络服务异常检测的大概,本篇将详细介绍SVDD和Isolation Forest这两种算法 1. SVDD算法 SVDD的英文全称是Support Vector Data Descr ...

随机推荐

  1. 2019HDU多校第六场 6641 TDL

    一.题目 TDL 二.分析 题意就是找一个$n$满足题目中的公式,找不到就输出$-1$. 对于$${( f (n,m) - n )} \oplus {n} =k$$ 可以转换一下变成$( f (n,m ...

  2. 多线程之volative关键字

    目录 轻量级同步机制:volative关键字 volative的作用 volatile非原子特性 volatile与synchronized比较 常用原子类进行自增自减操作 CAS 使用CAS原理实现 ...

  3. CSS轮廓和圆角

    1 2 <!DOCTYPE html> 3 <html lang="en"> 4 <head> 5 <meta charset=" ...

  4. Linux 自定义快捷命令

    Linux中一些比较常用的命令总是重复敲很麻烦,这个时候就可以使用 alias 来自定义快捷命令,用以简化操作.系统会有一些预定义的快捷命令,比如 ll 的效果就和 ls -l 一样. 可以使用 al ...

  5. 回顾反射机制Method

    package com.demo.service; public interface SayHello { void sayHello(String name); } 接口实现类 package co ...

  6. c++ 反汇编 继承

    单继承,父类中没有虚函数 单继承,父类存在虚函数,子类重写虚函数 单继承,父类存在虚函数,子类不新定义虚函数 单继承,父类存在虚函数,子类新定义虚函数 单继承,父类不存在虚函数,子类定义虚函数 多继承 ...

  7. Mysql之索引选择及优化

    索引模型 哈希表 适用于只有等值查询的场景,Memory引擎默认索引 InnoDB支持自适应哈希索引,不可干预,由引擎自行决定是否创建 有序数组:在等值查询和范围查询场景中的性能都非常优秀,但插入和删 ...

  8. CyclicBarrier:人齐了,老司机就可以发车了!

    上一篇咱讲了 CountDownLatch 可以解决多个线程同步的问题,相比于 join 来说它的应用范围更广,不仅可以应用在线程上,还可以应用在线程池上.然而 CountDownLatch 却是一次 ...

  9. 消息中间件-RabbitMQ基本使用

    RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件).RabbitMQ服务器是用Erlang语言编写的,而集群和故障转移是构建在开放电信平台框架上的.所有主要 ...

  10. 华为分析+App Linking:一站式解决拉新、留存、促活难

    移动互联网时代,用户注意力稀缺,"如何让用户一键直达APP特定页面"越来越受到产品和运营同学的关注. 比如在各个渠道投放了APP安装广告,希望新用户下载APP首次打开时直接进入活动 ...