[loj3523]分糖果
做法1
将问题离线,并在左端点和右端点打上差分,之后即可以看作求$f(C,[a_{1},a_{2},...,a_{n}])$,其表示以$C$为上限(0为下限),从0开始不断加上$a_{i}$(可以为负)的答案
再定义$g(C,a_{i})$,其与$f(C,a_{i})$的定义类似,但没有下限为0的限制
考虑两者的关系,显然$\forall 0\le j\le n$有
$$
f(C,[a_{1},a_{2},...,a_{n}])\ge f(C,[a_{j+1},a_{j+2},...,a_{n}])\ge g(C,[a_{j+1},a_{j+2},...,a_{n}])
$$
前者是因为在操作$a_{j-1}$后值非负,后者因为其没有下限显然值不增
另一方面,考虑最大的$j$,使得在$f(C,a_{i})$中操作$a_{j}$后值为0,即之后不会再变为0,那么也可以看作没有下限为0的限制,即有
$$
f(C,[a_{1},a_{2},...,a_{n}])=f(C,[a_{j+1},a_{j+2},...,a_{n}])=g(C,[a_{j+1},a_{j+2},...,a_{n}])
$$
(若不存在则令$j=0$,相等的原因类似,这里就省略了)
由此,我们得到了$f(C,[a_{1},a_{2},...,a_{n}])=\max_{0\le j\le n}g(C,[a_{j+1},a_{j+2},...,a_{n}])$
考虑$g(C,[a_{1},a_{2},...,a_{n}])$,令$S_{i}=\sum_{j=1}^{i}a_{j}$,若不存在$S_{i}>C$即为$S_{n}$,否则即$S_{n}-\max_{1\le i\le n}S_{i}+C$
将之代入前式并化简,也即
$$
f(C,[a_{1},a_{2},...,a_{n}])=S_{n}-\min_{0\le i\le n}\max(S_{i},\max_{i\le j\le n}S_{j}-C)
$$
考虑如何维护,二分枚举答案$T$,那么$f(C,a_{i})>T$当且仅当
$$
\exists 0\le i\le n,\max(S_{i},\max_{i\le j\le n}S_{j}-C)<S_{n}-T
$$
换言之,我们即要检验是否存在$S_{i}<S_{n}-T$且$\forall i\le j\le n,S_{j}<S_{n}-T+C$,显然后者具有单调性,通过线段树可以确定$i$的下限,然后求区间最小值即可
时间复杂度为$o(n\log^{2}n)$,可以通过

1 #include<bits/stdc++.h>
2 #include"candies.h"
3 using namespace std;
4 #define N 200005
5 #define ll long long
6 #define L (k<<1)
7 #define R (L+1)
8 #define mid (l+r>>1)
9 vector<int>ans,Add[N],Dec[N];
10 int n,m;
11 ll tag[N<<2],mx[N<<2],mn[N<<2];
12 void upd(int k,ll x){
13 tag[k]+=x;
14 mx[k]+=x;
15 mn[k]+=x;
16 }
17 void up(int k){
18 mx[k]=max(mx[L],mx[R]);
19 mn[k]=min(mn[L],mn[R]);
20 }
21 void down(int k){
22 upd(L,tag[k]);
23 upd(R,tag[k]);
24 tag[k]=0;
25 }
26 void update(int k,int l,int r,int x,int y,int z){
27 if ((l>y)||(x>r))return;
28 if ((x<=l)&&(r<=y)){
29 upd(k,z);
30 return;
31 }
32 down(k);
33 update(L,l,mid,x,y,z);
34 update(R,mid+1,r,x,y,z);
35 up(k);
36 }
37 ll query(int k,int l,int r,int x,int y){
38 if ((l>y)||(x>r))return 2e15;
39 if ((x<=l)&&(r<=y))return mn[k];
40 down(k);
41 return min(query(L,l,mid,x,y),query(R,mid+1,r,x,y));
42 }
43 int find(int k,int l,int r,ll x){
44 if (mx[k]<x)return -1;
45 if (l==r)return l;
46 down(k);
47 int ans=find(R,mid+1,r,x);
48 if (ans>=0)return ans;
49 return find(L,l,mid,x);
50 }
51 int query(int k){
52 int l=0,r=k;
53 ll S=query(1,0,m,m,m);
54 while (l<r){
55 int x=find(1,0,m,S-mid+k);
56 if (query(1,0,m,x+1,m)>=S-mid)r=mid;
57 else l=mid+1;
58 }
59 return l;
60 }
61 vector<int> distribute_candies(vector<int>c,vector<int>l,vector<int>r,vector<int>v){
62 n=c.size(),m=l.size();
63 for(int i=0;i<m;i++){
64 Add[l[i]].push_back(i);
65 Dec[r[i]].push_back(i);
66 }
67 for(int i=0;i<n;i++){
68 for(int j=0;j<Add[i].size();j++)update(1,0,m,Add[i][j]+1,m,v[Add[i][j]]);
69 ans.push_back(query(c[i]));
70 for(int j=0;j<Dec[i].size();j++)update(1,0,m,Dec[i][j]+1,m,-v[Dec[i][j]]);
71 }
72 return ans;
73 }
做法2
仍然离线+差分,考虑递归处理$f(C,[a_{1},a_{2},...,a_{n}],x)$的值($x$指操作前的值,初始为0)
令$sum_{i}=\sum_{j=1}^{i}a_{j}$,$mx$为$sum_{i}$的最大值(包括$sum_{0}$),$mn$为最小值,对其分类讨论:
1.若$x+mx\le C$或$x+mn\ge 0$,即没有上限或下限,与之前的$g$类似
2.注意到$C-mx<x<-mn$,也即$mx-mn>C$,则$f(C,a_{i},0)=f(C,a_{i},1)=...=f(C,a_{i},C)$
由此,可以递归处理,当右子树$mx-mn>C$显然就不用递归左子树了,否则递归左子树后右子树的结果可以直接$o(1)$求出
时间复杂度为$o(n\log n)$,可以通过
[loj3523]分糖果的更多相关文章
- CSDN 分糖果算法的思路和求助
昨天晚上 在csdn上做了一道分糖果的题目,我自个测的是没有问题,但是提交答案后,老失败,提示 你的程序正常运行并输出了结果,但是答案错误你的程序输出结果与测试数据中的输出结果不符 我先把自个思路说一 ...
- hunnu11543:小明的烦恼——分糖果
Problem description 小明在班里一直是个非常公正的孩子.这点同学和老师都非常清楚,这不,老师每周都会从家里带来一些糖果.然后叫小明把糖果分给其它小朋友,但这个班里的同学都有一个非 ...
- [LeetCode] Candy (分糖果),时间复杂度O(n),空间复杂度为O(1),且只需遍历一次的实现
[LeetCode] Candy (分糖果),时间复杂度O(n),空间复杂度为O(1),且只需遍历一次的实现 原题: There are N children standing in a line. ...
- C语言 · 分糖果
历届试题 分糖果 时间限制:1.0s 内存限制:256.0MB 问题描述 有n个小朋友围坐成一圈.老师给每个小朋友随机发偶数个糖果,然后进行下面的游戏: 每个小朋友都把自己的糖果分一 ...
- 蓝桥杯 历届试题 PREV-32 分糖果
历届试题 分糖果 时间限制:1.0s 内存限制:256.0MB 问题描述 有n个小朋友围坐成一圈.老师给每个小朋友随机发偶数个糖果,然后进行下面的游戏: 每个小朋友都把自己的糖果分一半给左手边 ...
- 牛客 2018NOIP 模你赛2 T2 分糖果 解题报告
分糖果 链接:https://www.nowcoder.com/acm/contest/173/B 来源:牛客网 题目描述 \(N\) 个小朋友围成一圈,你有无穷个糖果,想把其中一些分给他们. 从某个 ...
- 51nod——1402最大值、2479小b分糖果 (套路)
1402最大值:正向从1到n,如果没有限制,就依次递增1,如果有限制,就取那个限制和递增到这的最小值.这样保证1和每个限制点后面都是符合题意的递增,但是限制点前面这个位置可能会有落差(之前递增多了). ...
- 58同城笔试题:数组去重;分饼干(分糖果);最小路径和(leetcode64)
1. 数组去重 题目描述 /** * 有序数组去重 * 输出最终的数字个数 * 输入:1,2,2 * 输出:2 * @author Turing * */ 代码 import java.util.*; ...
- HNUSTOJ-1639 分糖果(几何)
1639: 分糖果 时间限制: 1 Sec 内存限制: 128 MB提交: 261 解决: 118[提交][状态][讨论版] 题目描述 为了实验室的发展,吴大大采购了一箱零食O(∩_∩)O~~ 在 ...
随机推荐
- 🚴♂️全套MySQL数据库教程_Mysql基础入门教程,零基础小白自学MySQL数据库必备教程☔ #002 # 第二单元 MySQL数据类型、操作表#
二.本单元知识点概述 (Ⅰ)知识点概述 二.本单元教学目标 (Ⅰ)重点知识目标 1.Mysql的数据类型2.如何选择数据类型3.创建表4.修改表5.删除表 (Ⅱ)能力目标 1.熟练创建数据库及删除数据 ...
- PLSQL安装,PLSQL汉化,激活
一)准备工作 1.点击下载PLSQL:https://www.allroundautomations.com/registered-plsqldev/.本次安装的是12.0.7,安装版本为64位 2. ...
- ArcPy获取栅格属性
获取栅格属性 (数据管理) 描述 从元数据和栅格数据集的相关描述性统计数据中检索信息. 使用方法 返回的属性将显示在结果窗口中. 此工具的 Python 结果是地理处理结果对象.要获取字符串值,请使用 ...
- SpringBoot入门05-全局配置文件
springboot全局配置文件作用是设置或修改默认设置 springboot全局配置文件有下面两种方式 application.xml配置文件 示例 server.port=8088 server. ...
- pycharm安装第三方库
https://jingyan.baidu.com/article/4853e1e54b845e1909f7268f.html
- Dapr-服务调用
前言 上一篇对Dapr进行了了解,并搭建了Dapr环境.接下来就对Dapr的各个构建块类型的了解.应用实际案例. 一.服务调用: 在许多具有多个需要相互通信的服务的环境中,都会面临着很多问题. 如: ...
- 【二食堂】Beta - 设计和计划
Beta设计和计划 需求再分析 根据助教.老师.用户以及各个团队PM的反馈意见,我们的项目目前有以下问题: 功能不完整 实用价值不高 两方面的缺陷,所以在Beta阶段,我们工作的中心还是完成项目规划中 ...
- BUAA 2020 软件工程 个人博客作业
BUAA 2020 软件工程 个人博客作业 Author: 17373051 郭骏 项目 内容 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业 ...
- shell脚本自学笔记
一. 什么是Shell脚本 shell脚本并不能作为正式的编程语言,因为它是在linux的shell中运行的,所以称为shell脚本.事实上,shell脚本就是一些命令的集合. 假如完成某个需求需要一 ...
- 个人宽带如何开启IPv6网络访问
IPv6是大势所趋,就在前段时间湖南联通发布公告,对家庭宽带提供 IPv6 地址,不再提供 IPv4地址,那本文就介绍 个人宽带如何开启 IPv6网络访问. 湖南联通停止向普通家庭宽带用户提供公网 I ...