Feature Distillation With Guided Adversarial Contrastive Learning
概
本文是通过固定教师网络(具有鲁棒性), 让学生网络去学习教师网络的鲁棒特征. 相较于一般的distillation 方法, 本文新加了reweight机制, 另外其损失函数非一般的交叉熵, 而是最近流行的对比损失.
主要内容

本文的思想是利用robust的教师网络\(f^t\)来辅助训练学生网络\(f^s\), 假设有输入\((x, y)\), 通过网络得到特征
\]
则\((t^+, s^+)\)构成正样本对, 自然我们需要学生网络提取的特征\(s^+\)能够逼近\(t^+\), 进一步, 构建负样本对, 采样样本\(\{x_1^-, x_2^-, \ldots, x_k^- \}\), 同时得到负样本对\((t^+,s_i^-)\), 其中\(s_i^-=f^s(x_i^-)\). 总的样本对就是
\]
根据负样本采样的损失, 最大化
\]
当然对于本文的问题需要特殊化, 既然先验\(P(C=1)=\frac{1}{k+1}, P(C=0)=\frac{k}{k+1}\), 故
\]
\(q(t,s)\)是一个区别于\(p(t,s)\)的分布, 本文采用了\(p(t)q(s)\).
作者进一步对前一项加了解释
P(1|t,s;\theta)
&= \frac{P(t,s)P(C=1)}{P(t,s)P(C=1) + P(t)P(s)P(C=0)} \\
&\le \frac{P(t,s)}{k\cdot P(t)P(s)}, \\
\end{array}
\]
故
\]
又\(J(\theta)\)的第二项是负的, 故
\]
所以最大化\(J(\theta)\)能够一定程度上最大化\(t,s\)的互信息.
reweight
教师网络一般要求精度(干净数据集上的准确率)比较高, 但是通过对抗训练所生成的教师网络往往并不具有这一特点, 所以作者采取的做法是, 对特征\(t\)根据其置信度来加权\(w\), 最后损失为
\]
其中
\]
即\(w_t\)为教师网络判断\(t^+\)类别为\(y\)(真实类别)的概率.
拟合概率\(P(1|t,s;\theta)\)
在负采样中, 这类概率是直接用逻辑斯蒂回归做的, 本文采用
\]
其中\(M\)为数据集的样本个数.
会不会
\]
把\(\gamma\)也作为一个参数训练符合NCE呢?
实验的细节
文中有如此一段话
we sample negatives from different classes rather than different instances, when picking up a positive sample from the same class.
也就是说在实际实验中, \(t^+,s^+\)对应的类别是同一类的, \(t^+, s^-\)对应的类别不是同一类的.
In our view, adversarial examples are like hard examples supporting the decision boundaries. Without hard examples, the distilled models would certainly make mistakes. Thus, we adopt a self-supervised way to generate adversarial examples using Projected Gradient Descent (PGD).
也就是说, \(t, s\)都是对抗样本?
超参数: \(k=16384\), \(\tau=0.1\).
疑问
算法中的采样都是针对单个样本的, 但是我想实际训练的时候应该还是batch的, 不然太慢了, 但是如果是batch的话, 怎么采样呢?
Feature Distillation With Guided Adversarial Contrastive Learning的更多相关文章
- Robust Pre-Training by Adversarial Contrastive Learning
目录 概 主要内容 代码 Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive ...
- 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》
论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...
- Adversarial Self-Supervised Contrastive Learning
目录 概 主要内容 Linear Part 代码 Kim M., Tack J. & Hwang S. Adversarial Self-Supervised Contrastive Lear ...
- Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method
论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Sel ...
- ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理
本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模 ...
- 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》
论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...
- 论文解读(GGD)《Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with Group Discrimination》
论文信息 论文标题:Rethinking and Scaling Up Graph Contrastive Learning: An Extremely Efficient Approach with ...
- 【主动学习】Variational Adversarial Active Learning
本文记录了博主阅读ICCV2019一篇关于主动学习论文的笔记,第一篇博客,以后持续更新哈哈 论文题目:<Variational AdVersarial Active Learning> 原 ...
随机推荐
- MapReduce06 MapReduce工作机制
目录 5 MapReduce工作机制(重点) 5.1 MapTask工作机制 5.2 ReduceTask工作机制 5.3 ReduceTask并行度决定机制 手动设置ReduceTask数量 测试R ...
- 日常Java 2021/10/24
Java ArrrayList ArrayList类是一个可以动态修改的数组,没有固定大小的限制,可以在任何时候添加或者删除元素 ArrayList类在java.util包中使用之前需要引用 E:泛型 ...
- day22面向对象编程思想
day22面向对象编程思想 1.面向过程 面向过程: 核心是"过程"二字 过程的终极奥义就是将程序流程化 过程是"流水线",用来分步骤解决问题的 面向对象: 核 ...
- Shell脚本的条件控制和循环语句
条件判断:if语句 语法格式: if [ expression ] then Statement(s) to be executed if expression is true fi 注意:expre ...
- 转 android开发笔记之handler+Runnable的一个巧妙应用
本文链接:https://blog.csdn.net/hfreeman2008/article/details/12118817 版权 1. 一个有趣Demo: (1)定义一个handler变量 pr ...
- Selenium和PhantomJS
Selenium Selenium是一个Web的自动化测试工具,最初是为网站自动化测试而开发的,类型像我们玩游戏用的按键精灵,可以按指定的命令自动操作,不同是Selenium 可以直接运行在浏览器上, ...
- 打印讲义中的幻灯片编号(O365新功能)
以下听听文档小程序
- HSPICE 电平触发D触发器仿真
一. HSPICE的基本操作过程 打开HSPICE程序,通过OPEN打开编写好的网表文件. 按下SIMULATE进行网表文件的仿真. 按下AVANWAVES查看波形图(仿真结果). 二. 网表文件结构 ...
- AT2287 [ARC067B] Walk and Teleport 题解
Content 一条直线上有 \(n\) 个城市,第 \(i\) 个城市的坐标为 \(x_i\).你在某一个城市内,每一次你可以按两种方式之一进行移动: 左右移动,每移动一个单位疲劳值增加 \(a\) ...
- mongodb 连接方式之mongo-shell
单机连接:mongo 120.131.0.64:27017 -u root -p KingSoft@1314 --authenticationDatabase admin 字符串连接 python i ...