Codeforces 题目传送门 & 洛谷题目传送门

你可能会疑惑我为什么要写 *2400 的题的题解

首先一个很明显的想法是,看到斐波那契数列和 \(10^9+9\) 就想到通项公式,\(F_i=\dfrac{1}{\sqrt{5}}((\dfrac{1+\sqrt{5}}{2})^n-(\dfrac{1-\sqrt{5}}{2})^n)\)。并且 \(5\) 在模 \(10^9+9\) 意义下的二次剩余存在,为 \(383008016\)。

我们建两棵线段树分别维护展开式中 \((\dfrac{1+\sqrt{5}}{2})^n\) 和 \((\dfrac{1-\sqrt{5}}{2})^n\) 的部分,查询的时候原本的 \(a_i\) 可以做个前缀和 \(\mathcal O(1)\) 加上,其余部分直接在两棵线段树上区间查询相减并乘个 \(\dfrac{1}{\sqrt{5}}\) 即可。区间加操作相当于在两棵线段树区间 \([l,r]\) 加等比数列,这个可以用线段树区间加等比数列的套路维护。具体来说,我们以 \((\dfrac{1+\sqrt{5}}{2})^n\) 为例,线段树每个区间 \([L,R]\) 的懒标记 \(lz\) 表示该区间中第 \(i\in [L,R]\) 项的值要增加 \((\dfrac{1+\sqrt{5}}{2})^{i-L}\),然后你预处理 \(s_i=\sum\limits_{j=0}^{i-1}(\dfrac{1+\sqrt{5}}{2})^j\) 就可以 \(\mathcal O(1)\) 下放懒标记了。时间复杂度线对。

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int SQRT_5=383008016;
const int INV2=5e8+5;
const int MAXN=3e5;
const int MOD=1e9+9;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,qu,INV_SQRT_5,a[MAXN+5],ss[MAXN+5];
struct segtree{
int base,pw[MAXN+5],sum[MAXN+5];
void prework(){
pw[0]=sum[0]=1;
for(int i=1;i<=n;i++) pw[i]=1ll*pw[i-1]*base%MOD;
for(int i=1;i<=n;i++) sum[i]=(sum[i-1]+pw[i])%MOD;
}
struct node{int l,r,sum,lz;} s[MAXN*4+5];
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;if(l==r) return;
int mid=l+r>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);
}
void pushup(int k){s[k].sum=(s[k<<1].sum+s[k<<1|1].sum)%MOD;}
void pushdown(int k){
if(s[k].lz){
s[k<<1].lz=(s[k<<1].lz+s[k].lz)%MOD;
s[k<<1].sum=(s[k<<1].sum+1ll*s[k].lz*sum[s[k<<1].r-s[k<<1].l])%MOD;
s[k<<1|1].lz=(s[k<<1|1].lz+1ll*s[k].lz*pw[s[k<<1].r-s[k<<1].l+1])%MOD;
s[k<<1|1].sum=(s[k<<1|1].sum+1ll*s[k].lz*sum[s[k<<1|1].r-s[k<<1|1].l]%MOD*pw[s[k<<1].r-s[k<<1].l+1])%MOD;
s[k].lz=0;
}
}
void modify(int k,int l,int r,int x){
if(l<=s[k].l&&s[k].r<=r){
s[k].sum=(s[k].sum+1ll*x*sum[s[k].r-s[k].l])%MOD;
s[k].lz=(s[k].lz+x)%MOD;return;
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) modify(k<<1,l,r,x);
else if(l>mid) modify(k<<1|1,l,r,x);
else modify(k<<1,l,mid,x),modify(k<<1|1,mid+1,r,1ll*x*pw[mid-l+1]%MOD);
pushup(k);
}
int query(int k,int l,int r){
if(l<=s[k].l&&s[k].r<=r) return s[k].sum;
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) return query(k<<1,l,r);
else if(l>mid) return query(k<<1|1,l,r);
else return (query(k<<1,l,mid)+query(k<<1|1,mid+1,r))%MOD;
}
} s1,s2;
int main(){
INV_SQRT_5=qpow(SQRT_5,MOD-2);scanf("%d%d",&n,&qu);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),ss[i]=(ss[i-1]+a[i])%MOD;
s1.base=1ll*(SQRT_5+1)*INV2%MOD;s2.base=1ll*(1-SQRT_5+MOD)*INV2%MOD;
s1.prework();s2.prework();s1.build(1,1,n);s2.build(1,1,n);
while(qu--){
int opt,l,r;scanf("%d%d%d",&opt,&l,&r);
if(opt==1) s1.modify(1,l,r,s1.base),s2.modify(1,l,r,s2.base);
else printf("%d\n",((ss[r]-ss[l-1]+MOD)%MOD+1ll*(s1.query(1,l,r)-s2.query(1,l,r)+MOD)*INV_SQRT_5%MOD)%MOD);
}
return 0;
}
/*
4 4
1 2 3 4
1 1 4
2 1 4
2 1 2
2 3 4
*/

当然我之所以写这个题解是因为还有别的做法。

上面的做法用到了模数是 \(10^9+9\) 的性质,倘若模数不是 \(10^9+9\) 那岂不就歇菜了?

考虑斐波那契数列的一个性质 \(F_n=F_{n-m}F_{m-1}+F_{n-m+1}F_m\)。

那么我们就有 \(F_{i-l+1}=F_iF_{-l}+F_{i+1}F_{-l+1}\)

这里我们定义负数下标的斐波那契数列为:\(F_{-1}=F_1-F_0=1,F_{-2}=F_0-F_{-1}=-1,F_{-3}=F_{-1}-F_{-2}=2\),以此类推。

显然 \(F_{-i}=(-1)^{i+1}F_i\)

至于为什么等式 \(F_n=F_{n-m}F_{m-1}+F_{n-m+1}F_m\) 对负数下标的斐波那契数列同样适用,可用跷跷板归纳法证明,这里就不再赘述了。

知道这个性质之后,考虑将代求的数列拆成两部分,\(a_i=F_ib_i+F_{i+1}c_i\)。那么一次区间修改操作相当于令 \([l,r]\) 中的 \(b_i\) 加上 \(F_{-l}\),\(c_i\) 加上 \(F_{-l+1}\)。于是问题转化为对于数列 \(A_i=B_iC_i\) 进行两种操作,将区间 \([l,r]\) 中的 \(C_i\) 加上 \(v\),求区间 \([l,r]\) 中所有 \(A_i\) 的和。这个可以用线段树维护,线段树上区间 \([L,R]\) 的懒标记 \(lz\) 表示 \([L,R]\) 中的 \(C_i\) 要加上 \(lz\)。考虑线段树每个区间记录一个 \(sum\) 表示 \(\sum\limits_{i=L}^RB_i\),这样可做到 \(\mathcal O(1)\) 下放懒标记,时间复杂度还是线对。

btw P5138 也是用的这个套路,既然这题写了题解那题就不写了罢

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=3e5;
const int MOD=1e9+9;
int n,qu,a[MAXN+5],fib[MAXN+5],fib_neg[MAXN+5],sum[MAXN+5];
struct node{int l,r,sum1,sum2,val1,val2,lz1,lz2;} s[MAXN*4+5];
void pushup(int k){
s[k].val1=(s[k<<1].val1+s[k<<1|1].val1)%MOD;
s[k].val2=(s[k<<1].val2+s[k<<1|1].val2)%MOD;
}
void pushdown(int k){
if(s[k].lz1||s[k].lz2){
s[k<<1].val1=(s[k<<1].val1+1ll*s[k<<1].sum1*s[k].lz1)%MOD;
s[k<<1].val2=(s[k<<1].val2+1ll*s[k<<1].sum2*s[k].lz2)%MOD;
s[k<<1].lz1=(s[k<<1].lz1+s[k].lz1)%MOD;
s[k<<1].lz2=(s[k<<1].lz2+s[k].lz2)%MOD;
s[k<<1|1].val1=(s[k<<1|1].val1+1ll*s[k<<1|1].sum1*s[k].lz1)%MOD;
s[k<<1|1].val2=(s[k<<1|1].val2+1ll*s[k<<1|1].sum2*s[k].lz2)%MOD;
s[k<<1|1].lz1=(s[k<<1|1].lz1+s[k].lz1)%MOD;
s[k<<1|1].lz2=(s[k<<1|1].lz2+s[k].lz2)%MOD;
s[k].lz1=s[k].lz2=0;
}
}
void build(int k,int l,int r){
s[k].l=l;s[k].r=r;if(l==r){s[k].sum1=fib[l];s[k].sum2=fib[l+1];return;}
int mid=l+r>>1;build(k<<1,l,mid);build(k<<1|1,mid+1,r);
s[k].sum1=(s[k<<1].sum1+s[k<<1|1].sum1)%MOD;
s[k].sum2=(s[k<<1].sum2+s[k<<1|1].sum2)%MOD;
}
void modify(int k,int l,int r,int v1,int v2){
if(l<=s[k].l&&s[k].r<=r){
s[k].lz1=(s[k].lz1+v1)%MOD;s[k].lz2=(s[k].lz2+v2)%MOD;
s[k].val1=(s[k].val1+1ll*s[k].sum1*v1%MOD)%MOD;
s[k].val2=(s[k].val2+1ll*s[k].sum2*v2%MOD)%MOD;
return;
} pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) modify(k<<1,l,r,v1,v2);
else if(l>mid) modify(k<<1|1,l,r,v1,v2);
else modify(k<<1,l,mid,v1,v2),modify(k<<1|1,mid+1,r,v1,v2);
pushup(k);
}
int query(int k,int l,int r){
if(l<=s[k].l&&s[k].r<=r) return (s[k].val1+s[k].val2)%MOD;
pushdown(k);int mid=s[k].l+s[k].r>>1;
if(r<=mid) return query(k<<1,l,r);
else if(l>mid) return query(k<<1|1,l,r);
else return (query(k<<1,l,mid)+query(k<<1|1,mid+1,r))%MOD;
}
int main(){
scanf("%d%d",&n,&qu);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum[i]=(sum[i-1]+a[i])%MOD;
fib[1]=fib[2]=1;fib_neg[1]=1;fib_neg[2]=MOD-1;
for(int i=3;i<=n+1;i++){
fib[i]=(fib[i-1]+fib[i-2])%MOD;
if(~i&1) fib_neg[i]=MOD-fib[i];
else fib_neg[i]=fib[i];
} build(1,1,n);
while(qu--){
int opt,l,r;scanf("%d%d%d",&opt,&l,&r);
if(opt==1) modify(1,l,r,fib_neg[l],fib_neg[l-1]);
else printf("%d\n",((sum[r]-sum[l-1]+MOD)%MOD+query(1,l,r))%MOD);
}
return 0;
}

当然此题还有可能有别的方法,不过由于我太懒了就不写了/wq

Codeforces 446C - DZY Loves Fibonacci Numbers(斐波那契数列+线段树)的更多相关文章

  1. Codeforces 446-C DZY Loves Fibonacci Numbers 同余 线段树 斐波那契数列

    C. DZY Loves Fibonacci Numbers time limit per test 4 seconds memory limit per test 256 megabytes inp ...

  2. codeforces 446C DZY Loves Fibonacci Numbers(数学 or 数论+线段树)(两种方法)

    In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation F1 ...

  3. codeforces 446C DZY Loves Fibonacci Numbers 数论+线段树成段更新

    DZY Loves Fibonacci Numbers Time Limit:4000MS     Memory Limit:262144KB     64bit IO Format:%I64d &a ...

  4. Codeforces 446C —— DZY Loves Fibonacci Numbers(线段树)

    题目:DZY Loves Fibonacci Numbers 题意比較简单,不解释了. 尽管官方的题解也是用线段树,但还利用了二次剩余. 可是我没有想到二次剩余,然后写了个感觉非常复杂度的线段树,还是 ...

  5. ACM学习历程—Codeforces 446C DZY Loves Fibonacci Numbers(线段树 && 数论)

    Description In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence ...

  6. codeforces 446C DZY Loves Fibonacci Numbers 线段树

    假如F[1] = a, F[2] = B, F[n] = F[n - 1] + F[n - 2]. 写成矩阵表示形式可以很快发现F[n] = f[n - 1] * b + f[n - 2] * a. ...

  7. [Amazon] Program for Fibonacci numbers 斐波那契数列

    The Fibonacci numbers are the numbers in the following integer sequence. 0, 1, 1, 2, 3, 5, 8, 13, 21 ...

  8. Codeforces 446C DZY Loves Fibonacci Numbers [线段树,数论]

    洛谷 Codeforces 思路 这题知道结论就是水题,不知道就是神仙题-- 斐波那契数有这样一个性质:\(f_{n+m}=f_{n+1}f_m+f_{n}f_{m-1}\). 至于怎么证明嘛-- 即 ...

  9. 10、end关键字和Fibonacci series: 斐波纳契数列

    # Fibonacci series: 斐波纳契数列 # 两个元素的总和确定了下一个数 a, b = 0, 1 #复合赋值表达式,a,b同时赋值0和1 while b < 10: print(b ...

随机推荐

  1. Hadoop MapReduce 保姆级吐血宝典,学习与面试必读此文!

    Hadoop 涉及的知识点如下图所示,本文将逐一讲解: 本文档参考了关于 Hadoop 的官网及其他众多资料整理而成,为了整洁的排版及舒适的阅读,对于模糊不清晰的图片及黑白图片进行重新绘制成了高清彩图 ...

  2. Codeforces1575D

    思路分析 此题采用dfs,注意X选中了之后所有的X值相同,所以需要一个flag来存储X的值. 注意前导0要单独讨论,然后就是当'X'或者'_'在第一位时不能选0,其它位可以选0 - 9 任意一个数. ...

  3. Scrum Meeting 11

    第11次例会报告 日期:2021年06月01日 会议主要内容概述: 汇报了进度,开始爆肝. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下记录仅为保证公开性: ...

  4. Noip模拟71 2021.10.7

    T1 签到题 结论题,找到规律就会做 规律是每个点的度数$\mod$颜色种数,如果不是$0$则贡献一个答案 1 #include<bits/stdc++.h> 2 #define int ...

  5. Machine learning (7-Regularization)

    1.The Problem of Over-fitting 2.Cost Function 3.Regularized Linear Regression 4.Regularized Logistic ...

  6. 详解DNS域名解析系统(域名、域名服务器[根、顶级、授权/权限、本地]、域名解析过程[递归与迭代])

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105583806 学习课程:<2019王道考研计算机网络> 学习目的 ...

  7. Celery Task(定时任务)及参数

    celery beat 是一个调度器:它以常规的时间间隔开启任务,任务将会在集群中的可用节点上运行. 默认情况下,入口项是从 beat_schedule 设置中获取,但是自定义的存储也可以使用,例如在 ...

  8. 『学了就忘』Linux基础 — 11、通过setup工具配置Linux系统IP地址

    目录 1.setup命令介绍 2.使用setup命令配置IP (1)执行setup命令 (2)进入图形化配置界面 (3)选择配置IP还是DNS (4)选择要配置的网卡 (5)进入IP地址配置页面 (6 ...

  9. stat命令的实现

    任务详情 学习使用stat(1),并用C语言实现 提交学习stat(1)的截图 man -k ,grep -r的使用 伪代码 产品代码 mystate.c,提交码云链接 测试代码,mystat 与st ...

  10. JAVA笔记9__异常/throw关键字/自定义异常/受检与非受检异常、assert关键字/StringBuffer、StringBuilder/代码国际化、动态文本

    /** * 异常:在程序中导致程序中断运行的一些指令 * 1.受检异常:编译期 * 2.非受检异常:运行期 * 异常处理过程分析: * 1.一旦产生异常,系统会自动产生一个异常类的实例化对象 * 2. ...