结论:最短路径一定是单独的一条边且在最小生成树上,可以用反证法证明。
那么求出最小生成树,对于每一个点建立一棵权值线段树,再对每一个权值线段树上的叶子节点开一个multiset,维护所有儿子中该种颜色的权值(普通节点仍维护区间最小值),答案也需要用multiset维护。

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define mid (l+r>>1)
5 multiset<int>ans,s[N*3];
6 struct ji{
7 int nex,to,len;
8 }edge[N<<1];
9 struct ji2{
10 int x,y,z;
11 bool operator < (const ji2 &k)const{
12 return z<k.z;
13 }
14 }a[N];
15 int E,V,V2,n,m,q,head[N],f[N],r[N],sh[N],id[N*29],ls[N*29],rs[N*29],tr[N*29],c[N];
16 int find(int k){
17 if (k==f[k])return k;
18 return f[k]=find(f[k]);
19 }
20 void add(int x,int y,int z){
21 edge[E].nex=head[x];
22 edge[E].to=y;
23 edge[E].len=z;
24 head[x]=E++;
25 }
26 void update(int &k,int l,int r,int x,int y,int p,int c){
27 if ((!k)&&(y==-1))return;
28 if (!k)k=++V;
29 if (l==r){
30 if (!id[k])id[k]=++V2;
31 if (y!=-1)
32 if (p==1)s[id[k]].insert(y);
33 else s[id[k]].erase(s[id[k]].find(y));
34 if ((c==x)||(!s[id[k]].size()))tr[k]=0x3f3f3f3f;
35 else tr[k]=(*s[id[k]].begin());
36 return;
37 }
38 if (x<=mid)update(ls[k],l,mid,x,y,p,c);
39 else update(rs[k],mid+1,r,x,y,p,c);
40 tr[k]=min(tr[ls[k]],tr[rs[k]]);
41 }
42 void dfs(int k,int fa){
43 f[k]=fa;
44 for(int i=head[k];i!=-1;i=edge[i].nex)
45 if (edge[i].to!=fa){
46 dfs(edge[i].to,k);
47 sh[edge[i].to]=edge[i].len;
48 update(r[k],1,n,c[edge[i].to],edge[i].len,1,c[k]);
49 }
50 ans.insert(tr[r[k]]);
51 }
52 int main(){
53 scanf("%d%d%*d%d",&n,&m,&q);
54 memset(head,-1,sizeof(head));
55 tr[0]=0x3f3f3f3f;
56 for(int i=1;i<=m;i++)scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
57 sort(a+1,a+m+1);
58 for(int i=1;i<=n;i++)f[i]=i;
59 for(int i=1;i<=m;i++)
60 if (find(a[i].x)!=find(a[i].y)){
61 f[find(a[i].x)]=find(a[i].y);
62 add(a[i].x,a[i].y,a[i].z);
63 add(a[i].y,a[i].x,a[i].z);
64 }
65 for(int i=1;i<=n;i++)scanf("%d",&c[i]);
66 dfs(1,0);
67 int x,y;
68 for(int i=1;i<=q;i++){
69 scanf("%d%d",&x,&y);
70 if (f[x]){
71 ans.erase(ans.find(tr[r[f[x]]]));
72 update(r[f[x]],1,n,c[x],sh[x],-1,c[f[x]]);
73 update(r[f[x]],1,n,y,sh[x],1,c[f[x]]);
74 ans.insert(tr[r[f[x]]]);
75 }
76 ans.erase(ans.find(tr[r[x]]));
77 update(r[x],1,n,c[x],-1,1,y);
78 c[x]=y;
79 update(r[x],1,n,c[x],-1,1,c[x]);
80 ans.insert(tr[r[x]]);
81 printf("%d\n",(*ans.begin()));
82 }
83 }

[bzoj4777]Switch Grass的更多相关文章

  1. BZOJ 4777: [Usaco2017 Open]Switch Grass

    4777: [Usaco2017 Open]Switch Grass Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 46  Solved: 10[Su ...

  2. BZOJ4777 [Usaco2017 Open]Switch Grass[最小生成树+权值线段树套平衡树]

    标题解法是吓人的. 图上修改询问,不好用数据结构操作.尝试转化为树来维护.发现(不要问怎么发现的)最小生成树在这里比较行得通,因为最近异色点对一定是相邻的(很好想),所以只要看最短的一条两端连着异色点 ...

  3. Luogu 3665 [USACO17OPEN]Switch Grass 切换牧草

    BZOJ 4777 被权限了. 这道题的做法看上去不难,但是感觉自己yy不出来. 首先是两个结论: 1.答案一定是连接着两个异色点的一条边. 2.答案一定在最小生成树上. 感觉看到了之后都比较显然,自 ...

  4. BZOJ 4777 Usaco2017 Open Switch Grass Kruskal+替罪羊树+权值线段树

    这道题首先可以看出答案一定是一条边,而且答案一定在最小生成树上,那么我们就可以在这个最小生成树上维护他与异色儿子的边最小值,所以我们就可以已通过Kruskal和一棵平衡树来解决,时间复杂度是O(n*l ...

  5. P3665 [USACO17OPEN]Switch Grass

    题目描述 N个点M条边的无向图,每个点有一个初始颜色,每次改变一个点的颜色,求改变后整张图上颜色不同的点之间的距离最小值. 思路 考虑整张图的距离最小值一定是一条边,而不可能是一条路径,那么显然这条边 ...

  6. USACO 2017 US Open

    只会做T1,FallDream T2 n^2暴力AC,太强啦. T1.Modern Art 题目大意:有一个n*n的矩阵,一开始都是0,你有n^2种颜色,编号1到n^2,每次可以选出一种颜色涂满一个子 ...

  7. 游戏编程算法与技巧 Game Programming Algorithms and Techniques (Sanjay Madhav 著)

    http://gamealgorithms.net 第1章 游戏编程概述 (已看) 第2章 2D图形 (已看) 第3章 游戏中的线性代数 (已看) 第4章 3D图形 (已看) 第5章 游戏输入 (已看 ...

  8. Partition:分区切换(Switch)

    在SQL Server中,对超级大表做数据归档,使用select和delete命令是十分耗费CPU时间和Disk空间的,SQL Server必须记录相应数量的事务日志,而使用switch操作归档分区表 ...

  9. java中if和switch哪个效率快

    首先要看一个问题,if 语句适用范围比较广,只要是 boolean 表达式都可以用 if 判断:而 switch 只能对基本类型进行数值比较.两者的可比性就仅限在两个基本类型比较的范围内.说到基本类型 ...

随机推荐

  1. IL合集

    由于之前写的表达式树合集,未编写任何注释且是以图片的形式展现给大家,在这里向各位看官道歉了,接下来为大家奉上新鲜出炉的香喷喷的IL合集,后面会持续更新,各位看官点关注不迷路,之前答应的手写IOC以及多 ...

  2. 新版发布|ShardingSphere 5.0.0-beta 来了!

    Apache ShardingSphere 5.0.0-beta 版在经过长达半年的筹备后,终于将在近期正式 Release! 本文将带领大家一同预览新版本即将带来哪些重大亮点功能. 作者介绍 潘娟 ...

  3. Java JDK环境变量如何配置?Java基础!

    在了解什么是Java.Java 语言的特点以及学习方法之后,本节将介绍如何搭建编写 Java JDK环境变量如何配置,只有搭建了环境才能敲代码! 学Java的都知道,JDK 是一种用于构建在 Java ...

  4. 8.5(337)——树形dp

    将题目进行翻译,就是遍历二叉树算出最大权值,在遍历过程中,不能同时选择两个相连的节点. 第一种子问题的构造,是以爷爷--父亲--孙子的"三代"节点一同构造的,将最优子问题的结构定义 ...

  5. HttpClient.PatchAsJsonAsync - dotnet/runtime 项目贡献小记

    TL;DR 迫于 PatchAsJsonAsync 方法缺失,我给 dotnet/runtime 项目贡献了相关的 API,可惜要到 .NET7 才能用上. https://github.com/do ...

  6. JuiceFS 如何帮助趣头条超大规模 HDFS 降负载

    作者简介 王振华,趣头条大数据总监,趣头条大数据负责人. 王海胜,趣头条大数据工程师,10 年互联网工作经验,曾在 eBay.唯品会等公司从事大数据开发相关工作,有丰富的大数据落地经验. 高昌健,Ju ...

  7. zlib开发笔记(四):zlib库介绍、编译windows vs2015x64版本和工程模板

    前言   Qt使用一些压缩解压功能,介绍过libzip库编译,本篇说明zlib库.需要用到zlib的msvc2015x64版本,编译一下.   版本编译引导 zlib在windows上的mingw32 ...

  8. [对对子队]会议记录5.22(Scrum Meeting9)

    今天已完成的工作 梁河览 ​ 工作内容:修改第一到九关新手引导,修复关卡选择bug ​ 相关issue:优化初步导出版本 ​ 相关签入:fix:修改第一关到第九关的新手引导和地图场景的bug 马嘉 ​ ...

  9. Noip模拟8 2021.6.17

    T1 星际旅行 仔细一看,发现像一个欧拉路(简称一笔画). 满足"可以一笔画"的条件是: 1.所有点都有偶数条连边; 2.有偶数个点连奇数条边; 满足以上两个条件的任意一个即可一笔 ...

  10. 2021.10.15考试总结[NOIP模拟77]

    \(n=40\)考虑\(meet \;in \;the \;middle\) 某个元素有关的量只有一个时考虑转化为树上问题 对暴力有自信,相信数据有梯度 没了 UPD:写了个略说人话的. T1 最大或 ...