先考虑判定是否有解,注意到无解即每一个数都出现偶数次,根据异或的性质,只需要随机$V_{i}$,假设$u$到$v$路径上所有节点构成集合$S$,若$\bigoplus_{x\in S,l\le a_{x}\le r}V_{a_{x}}=0$即无解

考虑如何快速计算上述值,根据异或的自反性,对其差分,也即统计一个节点到根路径上的权值异或,建立线段树,并在其父亲的基础上可持久化即可

更进一步的,在这个线段树上二分即可得到答案(即先判定每一段是否为0,再在其中二分)

时间复杂度为$o(n\log n)$,即可通过

下面来分析概率,假设$V_{i}$的随机范围为$[0,V)$(其中$V$为2的幂次),考虑答案错误的概率——

考虑一次询问中,求得异或为0但实际存在出现奇数次权值的概率,即$\frac{1}{V}$

总共询问$o(q\log n)$次,可以估计概率为$\frac{q\log n}{V}$,当$V\sim 2^{64}$即足够高

(另外注意随机时,如果是选择若干个数相乘,需要判定最终结果不为0)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 300005
4 #define ull unsigned long long
5 #define mid (l+r>>1)
6 struct Edge{
7 int nex,to;
8 }edge[N<<1];
9 int V,E,n,q,x,y,l,r,z,zz,head[N],dep[N],rt[N],a[N],f[N][21],ls[N*20],rs[N*20];
10 ull R[N],sum[N*20];
11 int New(int k){
12 sum[++V]=sum[k];
13 ls[V]=ls[k];
14 rs[V]=rs[k];
15 return V;
16 }
17 void add(int x,int y){
18 edge[E].nex=head[x];
19 edge[E].to=y;
20 head[x]=E++;
21 }
22 int lca(int x,int y){
23 if (dep[x]<dep[y])swap(x,y);
24 for(int i=20;i>=0;i--)
25 if (dep[f[x][i]]>=dep[y])x=f[x][i];
26 if (x==y)return x;
27 for(int i=20;i>=0;i--)
28 if (f[x][i]!=f[y][i]){
29 x=f[x][i];
30 y=f[y][i];
31 }
32 return f[x][0];
33 }
34 void update(int &k,int l,int r,int x,ull y){
35 k=New(k);
36 sum[k]^=y;
37 if (l==r)return;
38 if (x<=mid)update(ls[k],l,mid,x,y);
39 else update(rs[k],mid+1,r,x,y);
40 }
41 int query(int k1,int k2,int k3,int k4,int l,int r,int x,int y){
42 if ((l>y)||(x>r))return -1;
43 if ((x<=l)&&(r<=y)){
44 if (!(sum[k1]^sum[k2]^sum[k3]^sum[k4]))return -1;
45 }
46 if (l==r)return l;
47 int ans=query(ls[k1],ls[k2],ls[k3],ls[k4],l,mid,x,y);
48 if (ans>=0)return ans;
49 return query(rs[k1],rs[k2],rs[k3],rs[k4],mid+1,r,x,y);
50 }
51 void dfs(int k,int fa,int s){
52 dep[k]=s;
53 f[k][0]=fa;
54 for(int i=1;i<=20;i++)f[k][i]=f[f[k][i-1]][i-1];
55 rt[k]=rt[fa];
56 update(rt[k],1,n,a[k],R[a[k]]);
57 for(int i=head[k];i!=-1;i=edge[i].nex)
58 if (edge[i].to!=fa)dfs(edge[i].to,k,s+1);
59 }
60 int main(){
61 srand(time(0));
62 scanf("%d%d",&n,&q);
63 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
64 for(int i=1;i<=n;i++)
65 while (!R[i])R[i]=(ull)rand()*(ull)rand()*(ull)rand()*(ull)rand()*(ull)rand();
66 memset(head,-1,sizeof(head));
67 for(int i=1;i<n;i++){
68 scanf("%d%d",&x,&y);
69 add(x,y);
70 add(y,x);
71 }
72 dfs(1,0,1);
73 for(int i=1;i<=q;i++){
74 scanf("%d%d%d%d",&x,&y,&l,&r);
75 z=lca(x,y),zz=f[z][0];
76 printf("%d\n",query(rt[x],rt[y],rt[z],rt[zz],1,n,l,r));
77 }
78 }

[cf1479D]Odd Mineral Resource的更多相关文章

  1. CF1479X Codeforces Round #700

    C Continuous City(图的构造) 题目大意:让你构造一个n\le 32的有向无环无重边图,使得从1走到n的所有路径长度在L,R之间,且每种长度的路径只有唯一一条,$L,R\le 1e6$ ...

  2. C++ Core Guidelines

    C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...

  3. Spring resource bundle多语言,单引号format异常

    Spring resource bundle多语言,单引号format异常 前言 十一假期被通知出现大bug,然后发现是多语言翻译问题.法语中有很多单引号,单引号在format的时候出现无法匹配问题. ...

  4. Spring5:@Autowired注解、@Resource注解和@Service注解

    什么是注解 传统的Spring做法是使用.xml文件来对bean进行注入或者是配置aop.事物,这么做有两个缺点: 1.如果所有的内容都配置在.xml文件中,那么.xml文件将会十分庞大:如果按需求分 ...

  5. 【初探Spring】------Spring IOC(三):初始化过程---Resource定位

    我们知道Spring的IoC起到了一个容器的作用,其中装得都是各种各样的Bean.同时在我们刚刚开始学习Spring的时候都是通过xml文件来定义Bean,Spring会某种方式加载这些xml文件,然 ...

  6. 2000条你应知的WPF小姿势 基础篇<34-39 Unhandled Exceptions和Resource>

    在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...

  7. 【解决方案】 org.springframework.beans.factory.BeanCreationException: Error creating bean with name 'userHandler': Injection of resource dependencies failed;

    一个错误会浪费好多青春绳命 鉴于此,为了不让大家也走弯路,分享解决方案. [错误代码提示] StandardWrapper.Throwableorg.springframework.beans.fac ...

  8. AngularJS Resource:与 RESTful API 交互

    REST(表征性状态传输,Representational State Transfer)是Roy Fielding博士在2000年他的博士论文中提出来的一种软件架构风格.RESTful风格的设计不仅 ...

  9. 运行nltk示例 Resource u'tokenizers punkt english.pickle' not found解决

    nltk安装完毕后,编写如下示例程序并运行,报Resource u'tokenizers/punkt/english.pickle' not found错误 import nltk sentence ...

随机推荐

  1. IPtable防火墙概念介绍

    1.iptables安全优化 1.不配外网,做代理转发或者防火墙映射 2.并发过大,不建议开启防火墙 2.防火墙的工作流程: 按照配置规则的顺序自上而下,从前到后进行过滤 如果匹配上新规则,表明是阻止 ...

  2. 基于go语言学习工厂模式

    工厂模式 简单工厂模式(Simple Factory) 定义 优点 缺点 适用范围 代码实现 工厂方法模式(Factory Method) 定义 优点 缺点 适用范围 代码实现 抽象工厂模式(Abst ...

  3. Java初步学习——2021.10.05每日总结,第五周周三

    (1)今天做了什么: (2)明天准备做什么? (3)遇到的问题,如何解决? 今天学了对象与类,如何定义类和创建对象,以及构建方法的用法. 明天课比较多,把今天未学的例子敲一遍好了. 没有遇到什么问题.

  4. 微信小程序_快速入门01

    这段时间,嗯,大四课程已经结束了,工作也已经找到了,但是呢,到公司报道的时间还没到,哈哈,马上就开始人生的第一份工作了,怎么说确实有点期待~ 在这段时间一方面为第一份工作做各种准备,另一方面也没有停止 ...

  5. NX二次开发 克隆

    NXOpen.UF.UFSession theUfSession = NXOpen.UF.UFSession.GetUFSession(); try { //初始化 NXOpen.UF.UFClone ...

  6. Flink sql 之 TopN 与 StreamPhysicalRankRule (源码解析)

    基于flink1.14的源码做解析 公司内有很多业务方都在使用我们Flink sql平台做TopN的计算,今天同事突然问到我,Flink sql 是怎么实现topN的 ? 蒙圈了,这块源码没看过啊 , ...

  7. 使用ShardingSphere-JDBC完成Mysql的分库分表和读写分离

    1. 概述 老话说的好:选择比努力更重要,如果选错了道路,就很难成功. 言归正传,之前我们聊了使用 MyCat 实现Mysql的分库分表和读写分离,MyCat是服务端的代理,使用MyCat的好处显而易 ...

  8. kettle使用

    Kettle的安装及简单使用 目录 Kettle的安装及简单使用 一.kettle概述 二.kettle安装部署和使用 Windows下安装 案例1:MySQL to MySQL 案例2:使用作业执行 ...

  9. (五)、Docker 容器数据卷

    1.什么是数据卷 将运用与运行的环境打包形成容器运行 ,运行可以伴随着容器,但是我们对数据的要求希望是持久化的 容器之间希望有可能共享数据 Docker容器产生的数据,如果不通过docker comm ...

  10. STM32入门-STM32时钟系统,时钟初始化配置函数

    在前面推文的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,然后进入主函数main.那么我们就来看下SystemInit()函数到底做了哪些操作,首先打开我们前面使 ...