F - Valid payments

简化题意:有\(n\)种面值的货币,保证\(a[1]=1,且a[i+1]是a[i]的倍数\)。

有一个价格为\(x\)元的商品,付款\(y\)元,找零\(y-x\)元。

问满足以下条件的情况下的应支付金额\(y\)有多少种?

条件一:付款和找零都使用最少的硬币数量。

条件二:在满足条件一的情况下,付款是用过的硬币面值,找零时无法使用。

考虑这个题对于条件一而言,可以归结为第\(i\)个硬币食用的个数不能超过\(a[i+1]/a[i]\),否则的话我们直接使用\(a[i+1]\)会更优。这样的话在条件一的情况下,每个金额\(x\)都有唯一的表示方法:\(x=k_{x1}*a_1+k_{x2}*a_2+k_{x3}*a_3+...+k_{xn}*a_n\),这样的话我们令\(b=y-x\),则对于条件二而言限制条件就变成了\(k_{yi}和k_{bi}\)不能同时非零,即不能同时使用。

这样的话我们可以列出以下等式:

\(x=k_{x1}*a_1+k_{x2}*a_2+...+k_{xn}*a_n\)

\(+b=k_{b1}*a_1+k_{b2}*a_2+...+k_{bn}*a_n\)

\(y=k_{y1}*a_1+k_{y2}*a_2+...+k_{yn}*a_n\)

限制条件如下:\(k_i不能超过a[i+1]/a[i]\),且\(k_{yi}\)和\(k_{bi}\)不能同时非零。问不同的\(y\),或\(b\)的方案数?(可以发现\(y\)和\(b\)是一一对应的。)

由于\(k_{yi}\)和\(k_{bi}\)不能同时非零,则至少一个为\(0\),所以我们直接分类讨论就行:

1.若\(k_{yi}\)为0,则说明我们这里\(k_{xi}\)和\(k_{bi}\)相加的和必须也为0,但这怎么可能呢?考虑会不会是进位的问题呢?什么意思就是我的\(k_{xi}\)和\(k_{bi}\)都不超过\(a[i+1]/a[i]\)但我的和却超过它了,这样的话就可以用前面的替代了。那么这样的话也就是必须满足\(k_{xi}+k_{bi}+上一位的进位=a[i+1]/a[i]\).这样的话才能满足当前位为\(0\).

2.若\(k_{bi}\)为0,说明\(x_{ki}+上一位的进位=y_{ki}\)。

也就是说只要我们知道上一位是否进位,我们就可以根据当前\(x_{ki}\)来确定当前不同情况下的y和b了。具体的就是我们设\(dp[i][0/1]\)表示前\(i\)位,并且第\(i\)位进位/不进位的方案数。

则根据情况二有:\(dp[i][0]+=dp[i-1][0],dp[i][0]+=dp[i-1][1](k_{xi}!=a[i+1]/a[i]-1)\)

根据情况一有:\(dp[i][1]+=dp[i-1][1],dp[i][1]+=dp[i-1][0](k_{xi}!=0)\)。

由于金额最大的没有限定的使用数量,但我们发现\(k_{bn}\)只能为0.

//不等,不问,不犹豫,不回头.
#include<bits/stdc++.h>
#define _ 0
#define ls p<<1
#define db double
#define rs p<<1|1
#define P 1000000007
#define ll long long
#define INF 1000000000
#define get(x) x=read()
#define PLI pair<ll,int>
#define PII pair<int,int>
#define ull unsigned long long
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define rep(x,y,z) for(int x=y;x<=z;++x)
#define fep(x,y,z) for(int x=y;x>=z;--x)
#define go(x) for(int i=link[x],y=a[i].y;i;y=a[i=a[i].next].y)
using namespace std;
const int N=110;
ll n,x,a[N],mx[N],kx[N],dp[N][2]; inline ll read()
{
ll x=0,ff=1;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') ff=-1;ch=getchar();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
return x*ff;
} int main()
{
//freopen("1.in","r",stdin);
get(n);get(x);
rep(i,1,n) get(a[i]);
rep(i,1,n-1) mx[i]=a[i+1]/a[i];
fep(i,n,1)
{
if(x>=a[i])
{
kx[i]=x/a[i];
x-=kx[i]*a[i];
}
}
dp[0][0]=1;
rep(i,1,n)
{
dp[i][0]+=dp[i-1][0];
dp[i][1]+=dp[i-1][1];
if(kx[i]!=mx[i]-1) dp[i][0]+=dp[i-1][1];
if(kx[i]!=0) dp[i][1]+=dp[i-1][0];
}
putl(dp[n][0]);
return (0^_^0);
}
//以吾之血,铸吾最后的亡魂.

AtCoder Beginner Contest 182 F的更多相关文章

  1. AtCoder Beginner Contest 137 F

    AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...

  2. AtCoder Beginner Contest 261 F // 树状数组

    题目链接:F - Sorting Color Balls (atcoder.jp) 题意: 有n个球,球有颜色和数字.对相邻的两球进行交换时,若颜色不同,需要花费1的代价.求将球排成数字不降的顺序,所 ...

  3. AtCoder Beginner Contest 260 F - Find 4-cycle

    题目传送门:F - Find 4-cycle (atcoder.jp) 题意: 给定一个无向图,其包含了S.T两个独立点集(即S.T内部间的任意两点之间不存在边),再给出图中的M条边(S中的点与T中的 ...

  4. AtCoder Beginner Contest 253 F - Operations on a Matrix // 树状数组

    题目传送门:F - Operations on a Matrix (atcoder.jp) 题意: 给一个N*M大小的零矩阵,以及Q次操作.操作1(l,r,x):对于 [l,r] 区间内的每列都加上x ...

  5. AtCoder Beginner Contest 249 F - Ignore Operations // 贪心 + 大根堆

    传送门:F - Keep Connect (atcoder.jp) 题意: 给定长度为N的操作(ti,yi). 给定初值为0的x,对其进行操作:当t为1时,将x替换为y:当t为2时,将x加上y. 最多 ...

  6. AtCoder Beginner Contest 247 F - Cards // dp + 并查集

    原题链接:F - Cards (atcoder.jp) 题意: 给定N张牌,每张牌正反面各有一个数,所有牌的正面.反面分别构成大小为N的排列P,Q. 求有多少种摆放方式,使得N张牌朝上的数字构成一个1 ...

  7. AtCoder Beginner Contest 133 F Colorful Tree

    Colorful Tree 思路: 如果强制在线的化可以用树链剖分. 但这道题不强制在线,那么就可以将询问进行差分,最后dfs时再计算每个答案的修改值, 只要维护两个数组就可以了,分别表示根节点到当前 ...

  8. AtCoder Beginner Contest 171-175 F

    171 F - Strivore 直接把初始字符当成隔板,统计的方案数会有重复 为了避免重复情况,规定隔板字母尽可能最后出现,即在隔板字母后面不能插入含隔板字母的字符串 所以在隔板字母后插入的字符只有 ...

  9. AtCoder Beginner Contest 215 F题题解

    F - Dist Max 2 什么时候我才能突破\(F\)题的大关... 算了,不说了,看题. 简化题意:给定\(n\)个点的坐标,定义没两个点的距离为\(min(|x_i-x_j|,|y_i-y_j ...

随机推荐

  1. java.lang.NullPointerException: Attempt to invoke virtual method 'int com.example.xxx.Json.NewsBean.getError_code()' on a null object reference错误解决

    AS在运行的过程中出现了错误: java.lang.NullPointerException: Attempt to invoke virtual method 'int com.example.xx ...

  2. PHP方法参数的那点事儿

    在所有的编程语言中,方法或者函数,都可以传递一些参数进来进行业务逻辑的处理或者计算.这没什么可说的,但是在PHP中,方法的参数还有许多非常有意思的能力,下面我们就来说说这方面的内容. 引用参数 涉及到 ...

  3. final关键字在PHP中的使用

    final关键字的使用非常简单,在PHP中的最主要作用是定义不可重写的方法.什么叫不可重写的方法呢?就是子类继承后也不能重新再定义这个同名的方法. class A { final function t ...

  4. 3gcms导航,实现当前栏目高亮的办法

    <volist name="menu" id="vo" offset="0" length='8' key='k'> <l ...

  5. Jmeter系列(28)- 性能指标(1) | 常见性能指标

    TPS 概念 TPS (transaction per second):意思是每秒事务数,具体事务的定义,都是人为的,可以一个接口.多个接口.一个业务流程等等.一个事务是指事务内第一个请求发送到接收到 ...

  6. CI框架 模糊查询,链表查询

    $data = $this->db->from('flash_news') ->select('xx,xx,xx,xx') ->limit(2) ->like('tags ...

  7. whistle安装

    可参考官方帮助文档:https://wproxy.org/whistle/install.html 系统:windows10   jdk:1.8.0_171    node:10.16.0    np ...

  8. 鸿蒙内核源码分析(特殊进程篇) | 龙生龙,凤生凤,老鼠生儿会打洞 | 百篇博客分析OpenHarmony源码 | v46.02

    百篇博客系列篇.本篇为: v46.xx 鸿蒙内核源码分析(特殊进程篇) | 龙生龙凤生凤老鼠生儿会打洞 | 51.c.h .o 进程管理相关篇为: v02.xx 鸿蒙内核源码分析(进程管理篇) | 谁 ...

  9. P6563-[SBCOI2020]一直在你身旁【dp,单调队列】

    正题 题目链接:https://www.luogu.com.cn/problem/P6563 题目大意 长度为\(n\)的序列\(a_i\),现在有一个随机\([1,n]\)的整数,每次你可以花费\( ...

  10. P6329-[模板]点分树 | 震波

    正题 题目链接:https://www.luogu.com.cn/problem/P6329 解题思路 给出\(n\)个点的一棵树,每个点有权值,有\(m\)次操作 修改一个点\(x\)的权值为\(y ...