题意:

      输入两个整数n,m(1<m<5000,0<n<10000)求最小的k使得m^k是n!的因子。

思路:

     比较容易想,一开始手残wa了好几次,我们直接求出m和n!的素数因子和个数就行了,假如s1[a]表示的是n!的素数因子a的个数,s2是m的,则Ans=min(Ans ,s1[a]/s2[a]);这个应该不用解释,很好理解吧!

#include<stdio.h>

#include<string.h>

int Pri[11000] ,pt;

int mark[11000];

int s1[11000] ,s2[11000];

void DBPri()

{

    memset(mark ,0 ,sizeof(mark));

    mark[1] = 1;

    pt = 0;

    for(int i = 2 ;i <= 10000 ;i ++)

    {

        if(!mark[i])

        {

            Pri[++pt] = i;

            for(int j = i + i ;j <= 10000 ;j += i)

            mark[j] = 1;

        }

    }

}

int main ()

{

    DBPri();

    int t ,cas = 1 ,i ,j ,n ,m;

    scanf("%d" ,&t);

    while(t--)

    {

        scanf("%d %d" ,&m ,&n);

        memset(s1 ,0 ,sizeof(s1));

        for(i = 1 ;i <= n ;i ++)

        {

            int now = i;

            for(j = 1 ;Pri[j] <= now && j <= pt ;j ++)

            {

                while(now % Pri[j] == 0)

                {

                    now /= Pri[j];

                    s1[Pri[j]] ++;

                }

            }

        }

        memset(s2 ,0 ,sizeof(s2));

        int mm = m;

        for(i = 1 ;Pri[i] <= mm && i <= pt ;i ++)

        if(mm % Pri[i] == 0)

        {

            while(mm % Pri[i] == 0)

            {

                s2[Pri[i]] ++;

                mm /= Pri[i];

            }

        }

        int Ans = 100000;

        for(i = 1 ;Pri[i] <= m && i <= pt ;i ++)

        if(m % Pri[i] == 0)

        {

            if(Ans > s1[Pri[i]] / s2[Pri[i]])

            Ans = s1[Pri[i]] / s2[Pri[i]];

        }

        printf("Case %d:\n" ,cas ++);

        if(Ans == 0) printf("Impossible to divide\n");

        else  printf("%d\n" ,Ans);

    }

    return 0;

}

UVA10780幂和阶乘的更多相关文章

  1. 2019清明期间qbxt培训qwq

    4.4上午:数学基础 (qwq整成word和cpp了,它居然不能直接把文档附上来) part 1:高精度运算 高精加和高精减就不说了,之前写过博客了qwq,讲一讲高精乘和高精除吧. 1.高精度乘法(不 ...

  2. sequence——强行推式子+组合意义

    sequence 考虑长度<=x的方案数F(x),然后(F(x)-F(x-1))*x贡献到答案里 n平方的做法可以直接DP, 感觉有式子可言, 就推出式子:类似coat,每个长度为i的计算i次. ...

  3. 牛客网 牛客小白月赛1 I.あなたの蛙が帰っています-卡特兰数,组合数阶乘逆元快速幂

    I.あなたの蛙が帰っています   链接:https://www.nowcoder.com/acm/contest/85/I来源:牛客网     这个题有点意思,是卡特兰数,自行百度就可以.卡特兰数用处 ...

  4. 牛客网 Wannafly挑战赛11 B.白兔的式子-组合数阶乘逆元快速幂

    链接:https://www.nowcoder.com/acm/contest/73/B来源:牛客网 B.白兔的式子   时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 262144K, ...

  5. 快速幂的类似问题(51Nod 1008 N的阶乘 mod P)

    下面我们来看一个容易让人蒙圈的问题:N的阶乘 mod P. 51Nod 1008 N的阶乘 mod P 看到这个可能有的人会想起快速幂,快速幂是N的M次方 mod P,这里可能你就要说你不会做了,其实 ...

  6. 【板子】gcd、exgcd、乘法逆元、快速幂、快速乘、筛素数、快速求逆元、组合数

    1.gcd int gcd(int a,int b){ return b?gcd(b,a%b):a; } 2.扩展gcd )extend great common divisor ll exgcd(l ...

  7. N的阶乘末尾0的个数和其二进制表示中最后位1的位置

    问题一解法:     我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个 ...

  8. 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix

    Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...

  9. 2.2 编程之美--不要被阶乘吓到[zero count of N factorial]

    [本文链接] http://www.cnblogs.com/hellogiser/p/zero-count-of-N-factorial.html [题目] 问题1:‍给定一个整数N,那么N的阶乘N! ...

随机推荐

  1. 【ZeyFraのJavaEE开发小知识03】@DateTimeFomat和@JsonFormat

    关于在Element UI的el-dialog组件中使用echarts的问题 问题描述: "Cannot read property 'getAttribute' of null" ...

  2. Prometheus时序数据库-数据的插入

    Prometheus时序数据库-数据的插入 前言 在之前的文章里,笔者详细的阐述了Prometheus时序数据库在内存和磁盘中的存储结构.有了前面的铺垫,笔者就可以在本篇文章阐述下数据的插入过程. 监 ...

  3. 一个mac软件合集的网站

    https://github.com/jaywcjlove/awesome-mac/blob/master/README-zh.md

  4. @MockBean 注解后 bean成员对象为 null?

    笔者在写自测的时候遇到的问题: 我想模拟一个Bean,并在之后使用Mockito打桩,于是使用了 @MockBean 注解(spring集成mockito的产物),但代码编写好了后启动测试却报Null ...

  5. Eric Python IDE 论文数据图片生成

    Python编写,基于跨平台的Qt GUI工具包,集成了高度灵活的Scintilla编辑器控件. 大括号匹配,错误突出显示和可配置语法突出显示. 拼写检查库的集成 内置Python调试器,包括支持调试 ...

  6. java 动态规划解决上楼梯问题

    问题描述: 你正在爬楼梯. 它需要n步才能达到顶峰. 每次你可以爬1或2步. 您可以通过多少不同的方式登顶? 注意:给定n将是一个正整数. Example 1: Input: 2 Output: 2 ...

  7. Bug调试专项练习三笔记

    前言:大家需要将文件夹中"有问题的代码" 导入到自己的工作空间中一. 训练一: 正确效果:首先要求大家导入给大家的项目, 给项目的"虚拟路径" 设定为" ...

  8. 手把手教你docker安装宝塔面板

    手把手教你docker安装宝塔面板(针对小白提一下:需要先安装docker,安装docker的教程请自行百度,非常简单的),docker安装宝塔面板教程如下: 一.拉取centos镜像(当然这里拉取别 ...

  9. 学习C#第一天

    学习C#第一天 先是了解了VS 2019编辑器的基本使用 安装Visual Studio https://mp.weixin.qq.com/s?__biz=MzU0MTg5NDkzNA==&m ...

  10. LiteOS内核源码分析:任务LOS_Schedule

    摘要:调度,Schedule也称为Dispatch,是操作系统的一个重要模块,它负责选择系统要处理的下一个任务.调度模块需要协调处于就绪状态的任务对资源的竞争,按优先级策略从就绪队列中获取高优先级的任 ...