二分查找要注意边界值的取值,边界情况的判定

题目描述

编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:

  • 每行中的整数从左到右按升序排列。
  • 每行的第一个整数大于前一行的最后一个整数。

示例 1:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3

输出:true

示例 2:

输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13

输出:false

提示:

  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 100
  • -104 <= matrix[i][j], target <= 104

解答

解法一 先搜索在哪一行再搜索某一行

算法复杂度\(O(m+n)\)

class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int len = matrix.length;
int n = matrix[0].length;
for (int i = 0; i < len ; ++i) {
if (target >= matrix[i][0] && i + 1 <= len - 1 && target < matrix[i+1][0]) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == target) {
return true;
}
}
}
else if (target >= matrix[i][0] && i == len - 1) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == target) {
return true;
}
}
}
}
return false;
}
}

解法二 在解法一的基础上二分查找

算法复杂度\(O(log(mn))\)

class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
int n = matrix[0].length;
int m1 = findm(matrix, target, 0, m-1);
if (m1==-1) {return false;}
return findn(matrix[m1], target, 0, n-1);
}
public int findm(int[][] matrix, int target, int s, int t) { if (s == t) {
return target >= matrix[s][0] && target <= matrix[s][matrix[0].length-1] ? s : -1;
}
int mid = (s + t) >> 1;
if (target >= matrix[mid][0] && target < matrix[mid+1][0]) {
return mid;
}
else if (target > matrix[mid][0]) {
// 这里选择 mid+1 是为什么,细品一下
return findm(matrix, target, mid + 1, t);
}
else {
// 这里选择 mid 为什么不是 mid-1,继续品
return findm(matrix, target, s, mid);
}
}
public boolean findn(int[] matrix, int target, int s, int t) { if (s == t) {
return matrix[s] == target || matrix[t] == target;
}
int mid = (s + t) >> 1;
if (target == matrix[mid]) {
return true;
}
else if (matrix[mid] < target) {
return findn(matrix, target, mid + 1, t);
}
else {
return findn(matrix, target, s, mid);
}
}
}

解法三 将二维数组当做一维数组,二分查找

算法复杂度为\(O(log(m+n))\)

class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
int n = matrix[0].length; int pi = 0, pj = m * n - 1; while (pj > pi) {
int mid = (pi + pj) >> 1;
int i = mid / n;
int j = mid % n; if (matrix[i][j] == target) {
return true;
}
else if (matrix[i][j] > target) {
pj = mid;
continue;
}
else {
pi = mid + 1;
continue;
}
}
if (pi == pj) {
int i = pi / n;
int j = pi % n;
return matrix[i][j] == target;
}
return false;
}
}

leetcode 刷题(数组篇)74 题 搜索二维矩阵 (二分查找)的更多相关文章

  1. LeetCode:搜索二维矩阵【74】

    LeetCode:搜索二维矩阵[74] 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的 ...

  2. LeetCode 74. 搜索二维矩阵(Search a 2D Matrix)

    74. 搜索二维矩阵 74. Search a 2D Matrix 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. ...

  3. 【leetcode】74. 搜索二维矩阵

    题目链接:传送门 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例  ...

  4. Java实现 LeetCode 74 搜索二维矩阵

    74. 搜索二维矩阵 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 1: ...

  5. Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II)

    Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II) 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵 ...

  6. LeetCode 240. 搜索二维矩阵 II(Search a 2D Matrix II) 37

    240. 搜索二维矩阵 II 240. Search a 2D Matrix II 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性 ...

  7. Leetcode 240.搜索二维矩阵II

    搜索二维矩阵II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. 示例: 现有 ...

  8. Java实现 LeetCode 240 搜索二维矩阵 II(二)

    240. 搜索二维矩阵 II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. ...

  9. LeetCode74.搜索二维矩阵

    74.搜索二维矩阵 描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 示 ...

  10. lintcode:搜索二维矩阵II

    题目 搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没 ...

随机推荐

  1. 超强嘉宾阵容——NGK Global启动大会圆满举办

    近日,由星盟全球投资公司.灵石团队联合主办的NGK Global全球生态启动大会圆满开幕.大会汇集区块链领域.金融领域.密码学领域.智能算法领域等众多大咖,和NGK Global全球价值共识者共聚一堂 ...

  2. 对Innodb中MVCC的理解

    一.什么是MVCC MVCC (Multiversion Concurrency Control) 中文全程叫多版本并发控制,是现代数据库(如MySql)引擎实现中常用的处理读写冲突的手段,目的在于提 ...

  3. PyQt5 点不着的按钮

    1 import sys 2 import typing 3 4 from PyQt5 import QtWidgets, QtGui, QtCore 5 import random 6 7 clas ...

  4. 23_MySQL单行和多行子查询语法规则(重点)

    本节涉及SQL语句: -- 如何用子查询查找FORD和MARTIN两个人的同事? 1 WHERE子查询 SELECT ename FROM t_emp WHERE deptno IN (SELECT ...

  5. 生成UUID的代码

    代码: String reqId = UUID.randomUUID().toString().replace("-", "");

  6. 微信小程序:点击预览大图功能

    点击预览大图功能 1. 给轮播图swiper-item绑定点击事件 2. 预览功能的本质是调用了小程序的api:previewImage 微信公众号----文档----开发----API----媒体- ...

  7. Spring Cloud基础

    1.网站架构演变过程 传统架构(单点应用SSM或SSH)→分布式架构(项目拆分)→SOA架构(面向服务架构)→微服务架构 2.微服务概述 2.1SOA架构 面向服务的架构(SOA)是一个组件模型,它将 ...

  8. nacos配置中心之服务器端

    配置信息的发布 配置信息发布请求URL: POST: /v1/cs/configs nacos在STANDALONE模式或集群模式没有指定用mysql情况下使用derby数据库,在集群模式且指定mys ...

  9. 单链表及基本操作(C语言)

    #include <stdio.h> #include <stdlib.h> /** * 含头节点单链表定义及基本操作 */ //基本操作函数用到的状态码 #define TR ...

  10. Mardown语法

    1.什么是Markdown Mardown是一种文本标记语言,使用它,能让我们更加专注于内容的输出,而不是排版样式. 我们平常使用的.txt文档书写的文字是没有样式的,使用Markdown语法就可以给 ...