leetcode 刷题(数组篇)74 题 搜索二维矩阵 (二分查找)
二分查找要注意边界值的取值,边界情况的判定
题目描述
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
- 每行中的整数从左到右按升序排列。
- 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 3
输出:true
示例 2:
输入:matrix = [[1,3,5,7],[10,11,16,20],[23,30,34,60]], target = 13
输出:false
提示:
- m == matrix.length
- n == matrix[i].length
- 1 <= m, n <= 100
- -104 <= matrix[i][j], target <= 104
解答
解法一 先搜索在哪一行再搜索某一行
算法复杂度\(O(m+n)\)
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int len = matrix.length;
int n = matrix[0].length;
for (int i = 0; i < len ; ++i) {
if (target >= matrix[i][0] && i + 1 <= len - 1 && target < matrix[i+1][0]) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == target) {
return true;
}
}
}
else if (target >= matrix[i][0] && i == len - 1) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == target) {
return true;
}
}
}
}
return false;
}
}
解法二 在解法一的基础上二分查找
算法复杂度\(O(log(mn))\)
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
int n = matrix[0].length;
int m1 = findm(matrix, target, 0, m-1);
if (m1==-1) {return false;}
return findn(matrix[m1], target, 0, n-1);
}
public int findm(int[][] matrix, int target, int s, int t) {
if (s == t) {
return target >= matrix[s][0] && target <= matrix[s][matrix[0].length-1] ? s : -1;
}
int mid = (s + t) >> 1;
if (target >= matrix[mid][0] && target < matrix[mid+1][0]) {
return mid;
}
else if (target > matrix[mid][0]) {
// 这里选择 mid+1 是为什么,细品一下
return findm(matrix, target, mid + 1, t);
}
else {
// 这里选择 mid 为什么不是 mid-1,继续品
return findm(matrix, target, s, mid);
}
}
public boolean findn(int[] matrix, int target, int s, int t) {
if (s == t) {
return matrix[s] == target || matrix[t] == target;
}
int mid = (s + t) >> 1;
if (target == matrix[mid]) {
return true;
}
else if (matrix[mid] < target) {
return findn(matrix, target, mid + 1, t);
}
else {
return findn(matrix, target, s, mid);
}
}
}
解法三 将二维数组当做一维数组,二分查找
算法复杂度为\(O(log(m+n))\)
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int m = matrix.length;
int n = matrix[0].length;
int pi = 0, pj = m * n - 1;
while (pj > pi) {
int mid = (pi + pj) >> 1;
int i = mid / n;
int j = mid % n;
if (matrix[i][j] == target) {
return true;
}
else if (matrix[i][j] > target) {
pj = mid;
continue;
}
else {
pi = mid + 1;
continue;
}
}
if (pi == pj) {
int i = pi / n;
int j = pi % n;
return matrix[i][j] == target;
}
return false;
}
}
leetcode 刷题(数组篇)74 题 搜索二维矩阵 (二分查找)的更多相关文章
- LeetCode:搜索二维矩阵【74】
LeetCode:搜索二维矩阵[74] 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的 ...
- LeetCode 74. 搜索二维矩阵(Search a 2D Matrix)
74. 搜索二维矩阵 74. Search a 2D Matrix 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. ...
- 【leetcode】74. 搜索二维矩阵
题目链接:传送门 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 ...
- Java实现 LeetCode 74 搜索二维矩阵
74. 搜索二维矩阵 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 1: ...
- Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II)
Leetcode之二分法专题-240. 搜索二维矩阵 II(Search a 2D Matrix II) 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵 ...
- LeetCode 240. 搜索二维矩阵 II(Search a 2D Matrix II) 37
240. 搜索二维矩阵 II 240. Search a 2D Matrix II 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性 ...
- Leetcode 240.搜索二维矩阵II
搜索二维矩阵II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. 示例: 现有 ...
- Java实现 LeetCode 240 搜索二维矩阵 II(二)
240. 搜索二维矩阵 II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. ...
- LeetCode74.搜索二维矩阵
74.搜索二维矩阵 描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 示 ...
- lintcode:搜索二维矩阵II
题目 搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没 ...
随机推荐
- 浅析VAST代币与SPC算力币的释放模式
许多区块链业界分析师认为,2021年的区块链市场或许与2020年的有些许不同.2020年的区块链市场更注重的是DeFi领域,很多公链项目以及资本市场的巨鲸们也是将目光锁定在DeFi领域.而2021年的 ...
- IDEA 敏捷开发技巧——后缀完成
前言 "工欲善其事,必先利其器." 所以说今天来看一看如何压榨 IDEA ,让你的 IDEA 使用的更顺手! 今日技巧: 后缀完成 自定义后缀完成模版 示例 上面动图使用了 .so ...
- JDK源码阅读-RandomAccessFile
本文转载自JDK源码阅读-RandomAccessFile 导语 FileInputStream只能用于读取文件,FileOutputStream只能用于写入文件,而对于同时读取文件,并且需要随意移动 ...
- 1004 Counting Leaves ——PAT甲级真题
1004 Counting Leaves A family hierarchy is usually presented by a pedigree tree. Your job is to coun ...
- How DRI and DRM Work
How DRI and DRM Work Introduction This page is intended as an introduction to what DRI and DRM are, ...
- vue3与vue2的区别
全局属性 vue2 对于一些第三方插件,vue2中通常使用prototype原型来挂载到vue对象中 import Vue from 'vue' Vue.prototype.$http=Axiox V ...
- 使用 Java 开发 Gradle 插件
Gradle 插件代码可以在 build.gradle 中,buildSrc 项目中,以及独立的插件项目中编写.本文将介绍如何在一个独立的项目中使用 Java 语言编写 Gradle 插件,并发布到仓 ...
- 盘点Excel中的那些有趣的“bug”
本文由葡萄城技术团队原创并首发 转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. Excel 1.0早在1985年正式进入市场,距今已经有36年了,虽然在推出 ...
- 翻译:《实用的Python编程》03_06_Design_discussion
目录 | 上一节 (3.5 主模块) | 下一节 (4 类) 3.6 设计讨论 本节,我们重新考虑之前所做的设计决策. 文件名与可迭代对象 考虑以下两个返回相同输出的程序. # Provide a f ...
- 用vue.js实现的期货,股票的实时K线
用vue.js实现的期货,股票的实时k线 项目地址:https://github.com/zhengquantao/vue-Kline vue-kline 效果图 Build Setup 本项目基于V ...