Big Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 40262    Accepted Submission(s): 19637

Problem Description
In
many applications very large integers numbers are required. Some of
these applications are using keys for secure transmission of data,
encryption, etc. In this problem you are given a number, you have to
determine the number of digits in the factorial of the number.
 
Input
Input
consists of several lines of integer numbers. The first line contains
an integer n, which is the number of cases to be tested, followed by n
lines, one integer 1 ≤ n ≤ 107 on each line.
 
Output
The output contains the number of digits in the factorial of the integers appearing in the input.
 
Sample Input
2
10
20
 
Sample Output
7
19
 【分析】:这题要求n的阶乘的位数,如果n较大时,n的阶乘必将是一个很大的数,题中说1<=n<10000000,当n=10000000时可以说n的阶乘将是一个非常巨大的数字,对于处理大数的问题,我们一般字符串,这题当n取最大值时,就是一千万个数字相乘的积,太大了,就算保存在字符串中都有一点困难,而且一千万个数字相乘是会涉及到大数的乘法,大数的乘法是比较耗时的,就算计算出结果一般也会超时。这让我们不得不抛弃这种直接的方法。
再想一下,这题是要求n的阶乘的位数,而n的阶乘是n个数的乘积,那么要是我们能把这个问题分解就好了。
在这之前,我们必须要知道一个知识,任意一个正整数a的位数等于(int)log10(a) + 1;为什么呢?下面给大家推导一下:

对于任意一个给定的正整数a,假设10^(x-1)<=a<10^x,那么显然a的位数为x位,
  又因为
  log10(10^(x-1))<=log10(a)<(log10(10^x))
  即x-1<=log10(a)<x
  则(int)log10(a)=x-1,
  即(int)log10(a)+1=x
  即a的位数是(int)log10(a)+1

我们知道了一个正整数a的位数等于(int)log10(a) + 1,
现在来求n的阶乘的位数:
假设A=n!=1*2*3*......*n,那么我们要求的就是
(int)log10(A)+1,而:
log10(A)
        =log10(1*2*3*......n)  (根据log10(a*b) = log10(a) + log10(b)有)
         =log10(1)+log10(2)+log10(3)+......+log10(n)
现在我们终于找到方法,问题解决了,我们将求n的阶乘的位
数分解成了求n个数对10取对数的和,并且对于其中任意一个数,
都在正常的数字范围之类。

总结一下:n的阶乘的位数等于
 (int)(log10(1)+log10(2)+log10(3)+......+log10(n)) + 1

【代码】:

#include <bits/stdc++.h>
using namespace std; typedef long long LL;
const int MOD = ;
typedef vector<LL> vec;
typedef vector<vec> mat; int main()
{
int t,n,m,i;
double s;
cin>>t;
while(t--)
{
cin>>n;
k=;
for(int i=;i<=n;i++)
{
s+=log10(i);
}
cout<<(int)s+<<endl;
}
return ;
}

HDU 1018 Big Number【斯特林公式/log10 / N!】的更多相关文章

  1. HDU 1018 Big Number 斯特林公式

    Big Number 题意:算n!的位数. 题解:对于一个数来算位数我们一般都是用while去进行计算,但是n!这个数太大了,我们做不到先算出来在去用while算位数. while(a){ cnt++ ...

  2. HDU 1018 Big Number

    LINK:HDU 1018 题意:求n!的位数~ 由于n!最后得到的数是十进制,故对于一个十进制数,求其位数可以对该数取其10的对数,最后再加1~ 易知:n!=n*(n-1)*(n-2)*...... ...

  3. HDU 1018 Big Number (数学题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1018 解题报告:输入一个n,求n!有多少位. 首先任意一个数 x 的位数 = (int)log10(x ...

  4. HDU 1018 Big Number 数学题解

    Problem Description In many applications very large integers numbers are required. Some of these app ...

  5. hdu 1018:Big Number(水题)

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  6. hdu 1018 Big Number (数学题)

    Problem Description Inmany applications very large integers numbers are required. Some of theseappli ...

  7. hdu 1018 Big Number 数学结论

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. HDU 1018 Big Number (log函数求数的位数)

    Problem Description In many applications very large integers numbers are required. Some of these app ...

  9. HDU 1018 Big Number (阶乘位数)

    题意: 给一个数n,返回该数的阶乘结果是一个多少位(十进制位)的整数. 思路: 用对数log来实现. 举个例子 一个三位数n 满足102 <= n < 103: 那么它的位数w 满足 w ...

随机推荐

  1. Linux多线程总结

    一.Linux线程 进程与线程之间是有区别的,不过Linux内核只提供了轻量进程的支持,未实现线程模型.Linux是一种“多进程单线程”的操作系统.Linux本身只有进程的概念,而其所谓的“线程”本质 ...

  2. 多进程的基本使用--multiprocessing 【转】

    multiprocessing 如果你打算编写多进程的服务程序,Unix/Linux无疑是正确的选择.由于Windows没有fork调用,难道在Windows上无法用Python编写多进程的程序? 由 ...

  3. vue时时监听input输入框中 输入内容 写法

    Vue input 监听 使用 v-on:input="change" 实现即可 App.vue <template> <div> <md-field ...

  4. 第5模块闯关CSS练习题

    1.列举你知道的css选择器? 说道css选择器,大家都知道有许多种,但是真要你去掰着手指头数一数的话,你可能需要数几分钟.其实这么多选择器,完全可以分为两类: 标签选择器(*是特殊情况),可但标签, ...

  5. 如何使用PowerShell管理Windows服务

    [TechTarget中国原创] 作为一名系统管理员,最常见的任务之一就是学会管理Windows服务,这是保证Windows服务器和客户端正常运行的重要内容. 许多操作系统和应用程序都依赖于这些服务. ...

  6. 图文详解安装PHP运行环境

    一.什么是PHP运行环境 能够理解人与计算机交流时语言软件,通常指解释PHP编程语言的软件. 例如: PHP(代码) 需要PHP超文本预编译器(软件). Java需要JVM虚拟机 二.安装PHP运行环 ...

  7. Python学习之正则表达式初探

    正则表达式 正则表达式 (或 regexes ) 是通用的文本模式匹配的方法. Django URLconfs 允许你 使用任意的正则表达式来做强有力的URL映射,不过通常你实际上可能只需要使用很少的 ...

  8. STL学习笔记7 ---- algorithm(算法)

    STL中算可以分为三种, 1.变序型队列算法,可以改变容器内的数据: 2.非变序型队列算法,处理容器内的数据而不改变他们 : 3.通用数值算法,这涉及到很多专业领域的算术操作,这里不做介绍. 第一是变 ...

  9. sql注入过滤了#,--+怎么办

    题目是NCTF2018的web题目 第一段是错误的思路,第二段是晚上有思考后发现的直接看第二段吧. ① ?id=1'会直接出来报错提示. 猜测使用单引号保护id. 另外一打空格就提示you hacke ...

  10. Leetcode 502.IPO

    IPO 假设 LeetCode 即将开始其 IPO.为了以更高的价格将股票卖给风险投资公司,LeetCode希望在 IPO 之前开展一些项目以增加其资本. 由于资源有限,它只能在 IPO 之前完成最多 ...