Your friend is developing a computer game. He has already decided how the game world should look like — it should consist of nn locations connected by mm two-way passages. The passages are designed in such a way that it should be possible to get from any location to any other location.

Of course, some passages should be guarded by the monsters (if you just can go everywhere without any difficulties, then it's not fun, right?). Some crucial passages will be guarded by really fearsome monsters, requiring the hero to prepare for battle and designing his own tactics of defeating them (commonly these kinds of monsters are called bosses). And your friend wants you to help him place these bosses.

The game will start in location ss and end in location tt, but these locations are not chosen yet. After choosing these locations, your friend will place a boss in each passage such that it is impossible to get from ss to tt without using this passage. Your friend wants to place as much bosses as possible (because more challenges means more fun, right?), so he asks you to help him determine the maximum possible number of bosses, considering that any location can be chosen as ss or as tt.

Input

The first line contains two integers nn and mm (2≤n≤3⋅1052≤n≤3⋅105, n−1≤m≤3⋅105n−1≤m≤3⋅105) — the number of locations and passages, respectively.

Then mm lines follow, each containing two integers xx and yy (1≤x,y≤n1≤x,y≤n, x≠yx≠y) describing the endpoints of one of the passages.

It is guaranteed that there is no pair of locations directly connected by two or more passages, and that any location is reachable from any other location.

Output

Print one integer — the maximum number of bosses your friend can place, considering all possible choices for ss and tt.

Examples

Input
5 5
1 2
2 3
3 1
4 1
5 2
Output
2
Input
4 3
1 2
4 3
3 2
Output
3

题意:一条路径上必经的边为关键边,现在让你找一条路径,使得其关键边最多,输出最多的数量。

思路:如果一条路径上面有环,那么这个环的任意一条边都不是关键边。所以我们缩点,那么就算在一棵树上找最多的关键边,显然就算求直径。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=;
int From[maxn],Laxt[maxn],To[maxn<<],Next[maxn<<],cnt;
int low[maxn],dfn[maxn],times,q[maxn],head,scc_cnt,scc[maxn];
vector<int>G[maxn];
int dis[maxn],S,T,ans;
void add(int u,int v)
{
Next[++cnt]=Laxt[u]; From[cnt]=u;
Laxt[u]=cnt; To[cnt]=v;
}
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++times;
q[++head]=u;
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]==fa) continue;
if(!dfn[To[i]]) {
tarjan(To[i],u);
low[u]=min(low[u],low[To[i]]);
}
else low[u]=min(low[u],dfn[To[i]]);
}
if(low[u]==dfn[u]){
scc_cnt++;
while(true){
int x=q[head--];
scc[x]=scc_cnt;
if(x==u) break;
}
}
}
void dfs(int u,int f)
{
dis[u]=dis[f]+;
for(int i=;i<G[u].size();i++){
if(G[u][i]!=f) dfs(G[u][i],u);
}
}
int main()
{
int N,M,u,v,i,j;
scanf("%d%d",&N,&M);
for(i=;i<=M;i++){
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
tarjan(,);
for(i=;i<=N;i++){
for(j=Laxt[i];j;j=Next[j]){
if(scc[i]!=scc[To[j]])
G[scc[i]].push_back(scc[To[j]]);
}
}
dfs(,);
for(i=;i<=scc_cnt;i++) if(dis[i]>dis[S]) S=i;
dfs(S,);
for(i=;i<=scc_cnt;i++) ans=max(ans,dis[i]-);
printf("%d\n",ans);
return ;
}

对于无向图的缩点:

void tarjan(int u,int fa)
{
dfn[u]=low[u]=++times;
q[++head]=u;
for(int i=Laxt[u];i;i=Next[i]){
if(To[i]==fa) continue;
if(!dfn[To[i]]) {
tarjan(To[i],u);
low[u]=min(low[u],low[To[i]]);
}
else low[u]=min(low[u],dfn[To[i]]);
}
if(low[u]==dfn[u]){
scc_cnt++;
while(true){
int x=q[head--];
scc[x]=scc_cnt;
if(x==u) break;
}
}
}

对于有向图的缩点:二者唯一的区别就算有向图考虑横边,所以有个instack的判断。

void tarjan(int u)
{
instk[u]=;
q[++head]=u;
dfn[u]=low[u]=++times;
for(int i=Laxt[u];i;i=Next[i]){
int v=To[i];
if(!dfn[v]) {
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(instk[v])low[u]=min(low[u],dfn[v]);//无向图与有向图的区别
}
if(dfn[u]==low[u]){
scc_cnt++;
while(true){
int x=q[head--];
scc[x]=scc_cnt;
V[scc_cnt]+=w[x];
instk[x]=;
if(x==u) break;
}
}
}

CodeForces - 1000E :We Need More Bosses(无向图缩点+树的直径)的更多相关文章

  1. hdu-4612(无向图缩点+树的直径)

    题意:给你n个点和m条边的无向图,问你如果多加一条边的话,那么这个图最少的桥是什么 解题思路:无向图缩点和树的直径,用并查集缩点: #include<iostream> #include& ...

  2. cf1000E We Need More Bosses (tarjan缩点+树的直径)

    题意:无向联通图,求一条最长的路径,路径长度定义为u到v必须经过的边的个数 如果把强联通分量都缩成一个点以后,每个点内部的边都是可替代的:而又因为这是个无向图,缩完点以后就是棵树,跑两遍dfs求直径即 ...

  3. Codeforces 1000E We Need More Bosses (边双连通+最长链)

    <题目链接> 题目大意:给定一个$n$个节点$m$条边的无向图,问你对任意两点,最多有多少条特殊边,特殊边指删除这条边后,这两个点不能够到达. 解题分析: 特殊变其实就是指割边,题意就是问 ...

  4. codeforces GYM 100114 J. Computer Network 无相图缩点+树的直径

    题目链接: http://codeforces.com/gym/100114 Description The computer network of “Plunder & Flee Inc.” ...

  5. Codeforces 734E Anton and Tree(缩点+树的直径)

    题目链接: Anton and Tree 题意:给出一棵树由0和1构成,一次操作可以将树上一块相同的数字转换为另一个(0->1 , 1->0),求最少几次操作可以把这棵数转化为只有一个数字 ...

  6. HDU4612 Warm up 边双(重边)缩点+树的直径

    题意:一个连通无向图,问你增加一条边后,让原图桥边最少 分析:先边双缩点,因为连通,所以消环变树,每一个树边都是桥,现在让你增加一条边,让桥变少(即形成环) 所以我们选择一条树上最长的路径,连接两端, ...

  7. hdu4612 Warm up 缩点+树的直径

    题意抽象后为:给定一个无向图 问添加一条边的情况下最少能有多少个桥. 桥的定义:删除该边后原图变为多个连通块. 数据规模:点数N(2<=N<=200000),边数M(1<=M< ...

  8. F - Warm up HDU - 4612 tarjan缩点 + 树的直径 + 对tajan的再次理解

    题目链接:https://vjudge.net/contest/67418#problem/F 题目大意:给你一个图,让你加一条边,使得原图中的桥尽可能的小.(谢谢梁学长的帮忙) 我对重边,tarja ...

  9. HDU4612:Warm up(缩点+树的直径)

    Warm up Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Su ...

随机推荐

  1. VueJS事件处理器v-on

    事件监听可以使用 v-on 指令. v-on:click表达式 HTML: <!DOCTYPE html> <html> <head> <meta chars ...

  2. 笔记本中G-Sensor(加速计) M-Sensor 陀螺仪等传感器的区别

    1.G-sensor重力传感器 作用 G-sensor中文是加速度传感器的意思(英文全称是Accelerometer-sensor),它能够感知到加速力的变化,加速力就是当物体在加速过程中作用在物体上 ...

  3. Ubuntu下安装和编译ffmpeg

    参考:http://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu   1.安装依赖包 sudo apt-get update sudo apt-get -y ...

  4. ReactiveCocoa入门教程——第二部分【转载】

    ReactiveCocoa是一个框架,它能让你在iOS应用中使用函数响应式编程(FRP)技术.在本系列教程的第一部分中,你学到了如何将标准的动作与事件处理逻辑替换为发送事件流的信号.你还学到了如何转换 ...

  5. Codeforces 558(C、D、E)总结

    558C 题意:给你n个数,可对每一个数进行操作(乘2或者除以2).求最少的操作使得全部的数都相等. 思路 : dp[ t ] 表示全部的数转化到 t 所需的最少操作, vis[ t ] 表示有多少数 ...

  6. 关于一致/非一致代码段与TSS 关系的个人看法

    [0]概念定义 0.1)一致代码段: 简单理解,就是操作系统拿出来被共享的代码段,可以被低特权级的用户直接调用访问的代码, 但是特权级高的程序不允许访问特权级低的数据. 通常这些共享代码,是" ...

  7. WCF配置心得

    根据蒋金楠老师的博文所说的, WCF的终结点有三个要素组成,分别是地址(Address).绑定(Binding)和契约(Contract),简记可写成Endpoint = ABC. 地址:地址决定了服 ...

  8. Hadoop常见异常及其解决方式

    1.Shell$ExitCodeException 现象:执行hadoop job时出现例如以下异常: 14/07/09 14:42:50 INFO mapreduce.Job: Task Id : ...

  9. Hadoop实战-Flume之Sink Failover(十六)

    a1.sources = r1 a1.sinks = k1 k2 a1.channels = c1 # Describe/configure the source a1.sources.r1.type ...

  10. Vector 源码阅读

    Vector在功能上与ArrayList是类似的,实现的数据结构也是一样的.但Vector是线程安全的,ArrayList是线程不安全的.