用numpy实现搭建一个简单的forward和backward

 import numpy as np
N, D_in, H, D_out = 64, 1000, 100, 10
x = np.random.randn(N, D_in) # (64, 1000)
y = np.random.randn(N, D_out) # (64, 10)
w1 = np.random.randn(D_in, H) # (1000, 100)
w2 = np.random.randn(H, D_out) # (100, 10)
learning_rate = 1e-6 for t in range(2):
# Forward pass: compute predicted y
h = x.dot(w1) # (64, 100)
h_relu = np.maximum(h, 0) # (64, 100) 实现relu函数功能
y_pred = h_relu.dot(w2) # (64, 10) loss = np.square(y_pred - y).sum() # sum()所有元素求和
# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.T.dot(grad_y_pred)
grad_h_relu = grad_y_pred.dot(w2.T)
grad_h = grad_h_relu.copy() # (64, 100)
grad_h[h < 0] = 0 # 在h中负元素对应位置处grad_h中置0 -> 实现relu函数功能
grad_w1 = x.T.dot(grad_h) # .T是转置 (1000, 100) # Update weights
w1 -= learning_rate * grad_w1 # (1000, 100)
w2 -= learning_rate * grad_w2

用tensor实现搭建一个简单的forward和backward

 import torch

 dtype = torch.FloatTensor
# dtype = torch.cuda.FloatTensor # N is batch size; D_in is input dimension;
# H is hidden dimension; D_out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10 x = torch.randn(N, D_in).type(dtype)
y = torch.randn(N, D_out).type(dtype) # Randomly initialize weights
w1 = torch.randn(D_in, H).type(dtype)
w2 = torch.randn(H, D_out).type(dtype) learning_rate = 1e-6
for t in range(500):
# Forward pass: compute predicted y
h = x.mm(w1) # 与numpy对比,dot点乘
h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2) loss = (y_pred - y).pow(2).sum()
# Backprop to compute gradients of w1 and w2 with respect to loss
grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h_relu.t().mm(grad_y_pred)
grad_h_relu = grad_y_pred.mm(w2.t())
grad_h = grad_h_relu.clone()
grad_h[h < 0] = 0
grad_w1 = x.t().mm(grad_h) # Update weights using gradient descent
w1 -= learning_rate * grad_w1
w2 -= learning_rate * grad_w2

用variable实现forward和backward

 # use PyTorch Variables and autograd to implement our two-layer network; 
# now we no longer need to manually implement the backward pass through the network import torch
from torch.autograd import Variable dtype = torch.FloatTensor
N, D_in, H, D_out = 64, 1000, 100, 10 # Setting requires_grad=False indicates that we do not need to compute gradients with respect to these Variables during the backward pass.
x = Variable(torch.randn(N, D_in).type(dtype), requires_grad=False)
y = Variable(torch.randn(N, D_out).type(dtype), requires_grad=False) # Setting requires_grad=True indicates that we want to compute gradients with respect to these Variables during the backward pass.
w1 = Variable(torch.randn(D_in, H).type(dtype), requires_grad=True)
w2 = Variable(torch.randn(H, D_out).type(dtype), requires_grad=True) learning_rate = 1e-6
for t in range(2):
# Forward pass: we do not need to keep references to intermediate values since we are not implementing the backward pass by hand
y_pred = x.mm(w1).clamp(min=0).mm(w2) # Now loss is a Variable of shape (1,) and loss.data is a Tensor of shape (1,); loss.data[0] is a scalar value holding the loss.
loss = (y_pred - y).pow(2).sum()
# print(loss) # [torch.FloatTensor of size 1]
# print(loss.size()) # torch.Size([1])
# print(loss.data) # [torch.FloatTensor of size 1]
print(loss.data[0]) loss.backward() w1.data -= learning_rate * w1.grad.data
w2.data -= learning_rate * w2.grad.data w1.grad.data.zero_()
w2.grad.data.zero_()

用variable实现relu函数

 import torch
from torch.autograd import Variable class MyReLU(torch.autograd.Function):
def forward(self, input):
self.save_for_backward(input)
return input.clamp(min=0) def backward(self, grad_output):
input, = self.saved_tensors
grad_input = grad_output.clone()
grad_input[input < 0] = 0
return grad_input dtype = torch.FloatTensor
N, D_in, H, D_out = 64, 1000, 100, 10 x = Variable(torch.randn(N, D_in).type(dtype), requires_grad=False)
y = Variable(torch.randn(N, D_out).type(dtype), requires_grad=False) w1 = Variable(torch.randn(D_in, H).type(dtype), requires_grad=True)
w2 = Variable(torch.randn(H, D_out).type(dtype), requires_grad=True) learning_rate = 1e-6
for t in range(2):
relu = MyReLU() # Forward pass
y_pred = relu(x.mm(w1)).mm(w2) loss = (y_pred - y).pow(2).sum()
loss.backward() w1.data -= learning_rate * w1.grad.data
w2.data -= learning_rate * w2.grad.data w1.grad.data.zero_()
w2.grad.data.zero_()

模型搭建练习1_用numpy和tensor、variable实现前后向传播、实现激活函数的更多相关文章

  1. 入门项目数字手写体识别:使用Keras完成CNN模型搭建(重要)

    摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别. ...

  2. 一周总结:AutoEncoder、Inception 、模型搭建及下周计划

    一周总结:AutoEncoder.Inception .模型搭建及下周计划   1.AutoEncoder: AutoEncoder: 自动编码器就是一种尽可能复现输入信号的神经网络:自动编码器必须捕 ...

  3. [开发技巧]·TensorFlow中numpy与tensor数据相互转化

    [开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFl ...

  4. 【Python秘籍】numpy到tensor的转换

    在用pytorch训练神经网络时,我们常常需要在numpy的数组变量类型与pytorch中的tensor类型进行转换,今天给大家介绍一种它们之间互相转换的方法. 一.numpy到tensor 首先我们 ...

  5. TensorFlow中numpy与tensor数据相互转化

    numpy与tensor数据相互转化: *Numpy2Tensor 虽然TensorFlow网络在输入Numpy数据时会自动转换为Tensor来处理,但是我们自己也可以去显式的转换: data_ten ...

  6. Darknet_Yolov3模型搭建

    Darknet_Yolov3模型搭建 YOLO(You only look once)是目前流行的目标检测模型之一,目前最新已经发展到V3版本了,在业界的应用也很广泛.YOLO的特点就是"快 ...

  7. 【python学习小知识】求绝对值和numpy和tensor的相互转换

    一.python求绝对值的三种方法 1.条件判断 2.内置函数abs() 3.内置模块 math.fabs 1.条件判段,判断大于0还是小于0,小于0则输出相反数即可 # 法1:使用条件判断求绝对值 ...

  8. Python 学习之中的一个:在Mac OS X下基于Sublime Text搭建开发平台包括numpy,scipy

    1 前言 Python有许多IDE能够用,官方自己也带了一个,Eclipse也能够. 但我在使用各种IDE之后,发现用Sublime Text是最好用的一个.因此.我都是用Sublime Text来编 ...

  9. TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.

    报错原因:numpy不能读取CUDA tensor 需要将它转化为 CPU tensor. 所以如果想把CUDA tensor格式的数据改成numpy时,需要先将其转换成cpu float-tenso ...

随机推荐

  1. Oracle数据库迁移--->从Windows到Linux

    I did a practice to migrate the oracle database from windows to linux operation system. The followin ...

  2. VMware workstation 9.0中安装Windows server 2012 和 Hyper-v

    一.准备工作 首先下载和安装和安装VMware workstation 9.0 下载Windows server 2012 iso镜像文件 二.安装Windows server 2012虚拟机 1.新 ...

  3. 39、apk瘦身(转载)

    本文转自::Android开发中文站 » 关于APK瘦身值得分享的一些经验 从APK的文件结构说起 APK在安装和更新之前都需要经过网络将其下载到手机,如果APK越大消耗的流量就会越多,特别是对于使用 ...

  4. 【Luogu P2781】 传教

    这题是可以用线段树做的. 虽然$n\leq 10^9$ 可以发现,真正需要用到的节点很少,故动态开点,只有需要用到的时候才新建节点. 这里我在下放标记的时候新建节点,因为每操作/查询一个节点都需要先下 ...

  5. Leetcode 599.两个列表的最小索引总和

    两个列表的最小索引总和 假设Andy和Doris想在晚餐时选择一家餐厅,并且他们都有一个表示最喜爱餐厅的列表,每个餐厅的名字用字符串表示. 你需要帮助他们用最少的索引和找出他们共同喜爱的餐厅. 如果答 ...

  6. [oldboy-django][6其他]备份数据库和导入数据库

    # 备份数据库 - 简单备份 mysqldump -uroot -pec494904 ecmangent-mobile > /tmp/backfile.sql 表结构+数据 - --opt my ...

  7. JS获取屏幕宽度

    document.write("屏幕分辨率为:"+screen.width+"*"+screen.height+"<br />" ...

  8. OOP & DOM

    OOP & DOM let Dom = Dom || {}; Dom = { checkValType(val) { let typeString = Object.prototype.toS ...

  9. autoprefixer小记

    autoprefixer配置 // var aPostcss = [require('autoprefixer')({ browsers: ['ios>=3','android>=2',' ...

  10. This dependency was not found: * !!vue-style-loader!css-loader? 解决方案

    但是当你新建一个vue项目时,需要重新安装stylus,否则报错: This dependency was not found: * !!vue-style-loader!css-loader?{&q ...