【bzoj2724】[Violet 6]蒲公英 分块+STL-vector
题目描述
.gif)
输入
.gif)
修正一下
l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
输出
.gif)
样例输入
6 3
1 2 3 2 1 2
1 5
3 6
1 5
样例输出
1
2
1
题解
分块+STL-vector
一个显而易见的结论:区间众数一定是一段连续的块的众数或块外的数,证明略(逃
先把数据离散化,然后分块预处理出f[i][j],表示从块i到块j的众数位置。具体实现的话直接开个桶存一下就好了。
然后考虑询问,整块的直接拿出来求一下出现次数,块外的单独拿出来求一下出现次数,只要求$2\sqrt n+1$次。
现在只要想出怎样求出来出现次数即可。一个简单地方法是:对于每个数开一个vector存一下出现位置,然后在vector上二分查找出现位置。
总时间复杂度为$O(n\sqrt n\log n)$,常数有点大...
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#define N 50010
#define bl(x) (x - 1) / si
using namespace std;
vector<int> v[N];
int a[N] , c[N] , cnt[N] , f[250][250] , ref[N];
int query(int p , int l , int r)
{
return upper_bound(v[p].begin() , v[p].end() , r) - lower_bound(v[p].begin() , v[p].end() , l);
}
int main()
{
int n , m , si , i , j , t , maxn , x , y , ans , last = 0;
scanf("%d%d" , &n , &m) , si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , c[i] = a[i];
sort(c + 1 , c + n + 1);
for(i = 1 ; i <= n ; i ++ ) t = a[i] , a[i] = lower_bound(c + 1 , c + n + 1 , a[i]) - c , v[a[i]].push_back(i) , ref[a[i]] = t;
for(i = 0 ; i <= (n - 1) / si ; i ++ )
{
memset(cnt , 0 , sizeof(cnt)) , maxn = 0;
for(j = i * si + 1 ; j <= n ; j ++ )
{
cnt[a[j]] ++ ;
if(cnt[a[j]] > maxn || (cnt[a[j]] == maxn && a[j] < t)) maxn = cnt[a[j]] , t = a[j];
if(j % si == 0) f[i][bl(j)] = t;
}
}
while(m -- )
{
scanf("%d%d" , &x , &y) , x = (x + last - 1) % n + 1 , y = (y + last - 1) % n + 1 , maxn = 0;
if(x > y) swap(x , y);
if(bl(y) - bl(x) < 2)
{
for(i = x ; i <= y ; i ++ )
if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
maxn = t , ans = a[i];
}
else
{
for(i = x ; i <= (bl(x) + 1) * si ; i ++ )
if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
maxn = t , ans = a[i];
if((t = query(f[bl(x) + 1][bl(y) - 1] , x , y)) > maxn || (t == maxn && f[bl(x) + 1][bl(y) - 1] < ans))
maxn = t , ans = f[bl(x) + 1][bl(y) - 1];
for(i = bl(y) * si + 1 ; i <= y ; i ++ )
if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
maxn = t , ans = a[i];
}
printf("%d\n" , last = ref[ans]);
}
return 0;
}
【bzoj2724】[Violet 6]蒲公英 分块+STL-vector的更多相关文章
- bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式
这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...
- BZOJ2724 [Violet 6]蒲公英 分块
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...
- [BZOJ2724][Violet 6]蒲公英
[BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...
- 【BZOJ2724】[Violet 6]蒲公英 分块+二分
[BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...
- BZOJ 2724: [Violet 6]蒲公英( 分块 )
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...
- bzoj2724: [Violet 6]蒲公英(分块)
传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...
- 【分块】bzoj2724 [Violet 6]蒲公英
分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...
- bzoj2724: [Violet 6]蒲公英(离散化+分块)
我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...
- BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]
传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...
随机推荐
- 七、vue中将token存到cookie
使用js-cookie工具: 1.npm i js-cookie //安装2.import Cookies from 'js-cookie' //引用 // 存入cookie:Cookies.set( ...
- Windows无法停用设备,原因是某个程序正在使用它...
有时候,当我们用完U盘需要弹出是,会出现“Windows无法停用设备,原因是某个程序正在使用它…”的黄色警告,很无奈.不过可以通过一些方法进行解决(win10版): 1. 打开“文件资源管理器”,选择 ...
- linux简单常用命令
除了yum命令,还有些简单的命令,在此记录一下,加深记忆: free -h 查询内存和交换分区. rpm -qa | grep libaio 查看当前环境是否安装某rpm软件包
- 01_3_查询指定id的单个对象
01_3_查询指定id的单个对象 1. 映射文件配置如下信息 <select id="selectStudentById" resultClass="Student ...
- iOS深拷贝与浅拷贝
概念 对象拷贝有两种方式:浅复制和深复制.顾名思义,浅复制,并不拷贝对象本身,仅仅是拷贝指向对象的指针:深复制是直接拷贝整个对象内存到另一块内存中. 如图详解:
- Docker 容器的跨主机连接
使用网桥实现跨主枳容器连接 不推荐 使用OpenvSwitch实现跨主机容器连接 OpenvSwitch: OpenvSwitch是一个高质量的.多层虚拟交换枳,使用开源Apache2.0许可协议,由 ...
- 我如何解决Centos下cannot find a valid baseurl for repo的问题的
刚刚安装完centos,进入命令行模式后,发现所有的命令都不能使用,最后一行显示:Error:Cannot find a valid baseurl for repo:base,如何解决? 在cent ...
- Primer C++第五版 读书笔记(一)
Primer C++第五版 读书笔记(一) (如有侵权请通知本人,将第一时间删文) 1.1-2.2 章节 关于C++变量初始化: 初始化不是赋值,初始化的含义是创建变量时赋予其一个初始值,而赋值的含义 ...
- python能干什么?
python能干什么? 网络爬虫 爬虫,指的是从互联网采集数据的程序脚本 . 爬天爬地爬空气 ,无聊的时候爬一爬吃鸡数据.b站评论,能得出很多有意思的结论.知乎有个很有意思的问题——"利用爬 ...
- django中的objects.get和objects.filter方法的区别
为了说明它们两者的区别定义2个models class Student(models.Model): name = models.CharField('姓名', max_length=20, defa ...