【bzoj2724】[Violet 6]蒲公英 分块+STL-vector
题目描述
.gif)
输入
.gif)
修正一下
l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
输出
.gif)
样例输入
6 3
1 2 3 2 1 2
1 5
3 6
1 5
样例输出
1
2
1
题解
分块+STL-vector
一个显而易见的结论:区间众数一定是一段连续的块的众数或块外的数,证明略(逃
先把数据离散化,然后分块预处理出f[i][j],表示从块i到块j的众数位置。具体实现的话直接开个桶存一下就好了。
然后考虑询问,整块的直接拿出来求一下出现次数,块外的单独拿出来求一下出现次数,只要求$2\sqrt n+1$次。
现在只要想出怎样求出来出现次数即可。一个简单地方法是:对于每个数开一个vector存一下出现位置,然后在vector上二分查找出现位置。
总时间复杂度为$O(n\sqrt n\log n)$,常数有点大...
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <algorithm>
#define N 50010
#define bl(x) (x - 1) / si
using namespace std;
vector<int> v[N];
int a[N] , c[N] , cnt[N] , f[250][250] , ref[N];
int query(int p , int l , int r)
{
return upper_bound(v[p].begin() , v[p].end() , r) - lower_bound(v[p].begin() , v[p].end() , l);
}
int main()
{
int n , m , si , i , j , t , maxn , x , y , ans , last = 0;
scanf("%d%d" , &n , &m) , si = (int)sqrt(n);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i]) , c[i] = a[i];
sort(c + 1 , c + n + 1);
for(i = 1 ; i <= n ; i ++ ) t = a[i] , a[i] = lower_bound(c + 1 , c + n + 1 , a[i]) - c , v[a[i]].push_back(i) , ref[a[i]] = t;
for(i = 0 ; i <= (n - 1) / si ; i ++ )
{
memset(cnt , 0 , sizeof(cnt)) , maxn = 0;
for(j = i * si + 1 ; j <= n ; j ++ )
{
cnt[a[j]] ++ ;
if(cnt[a[j]] > maxn || (cnt[a[j]] == maxn && a[j] < t)) maxn = cnt[a[j]] , t = a[j];
if(j % si == 0) f[i][bl(j)] = t;
}
}
while(m -- )
{
scanf("%d%d" , &x , &y) , x = (x + last - 1) % n + 1 , y = (y + last - 1) % n + 1 , maxn = 0;
if(x > y) swap(x , y);
if(bl(y) - bl(x) < 2)
{
for(i = x ; i <= y ; i ++ )
if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
maxn = t , ans = a[i];
}
else
{
for(i = x ; i <= (bl(x) + 1) * si ; i ++ )
if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
maxn = t , ans = a[i];
if((t = query(f[bl(x) + 1][bl(y) - 1] , x , y)) > maxn || (t == maxn && f[bl(x) + 1][bl(y) - 1] < ans))
maxn = t , ans = f[bl(x) + 1][bl(y) - 1];
for(i = bl(y) * si + 1 ; i <= y ; i ++ )
if((t = query(a[i] , x , y)) > maxn || (t == maxn && a[i] < ans))
maxn = t , ans = a[i];
}
printf("%d\n" , last = ref[ans]);
}
return 0;
}
【bzoj2724】[Violet 6]蒲公英 分块+STL-vector的更多相关文章
- bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式
这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...
- BZOJ2724 [Violet 6]蒲公英 分块
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...
- [BZOJ2724][Violet 6]蒲公英
[BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...
- 【BZOJ2724】[Violet 6]蒲公英 分块+二分
[BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...
- BZOJ 2724: [Violet 6]蒲公英( 分块 )
虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...
- bzoj2724: [Violet 6]蒲公英(分块)
传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...
- 【分块】bzoj2724 [Violet 6]蒲公英
分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...
- bzoj2724: [Violet 6]蒲公英(离散化+分块)
我好弱啊..这题调了2天QwQ 题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数.(区间众数) 这题如果用主席树就可以不用处理一 ...
- BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]
传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...
随机推荐
- 关于火狐浏览器在ubuntu和安卓手机上的同步
最近在ubuntu使用火狐浏览器,感觉还不错.我想着,如果在我的安卓手机上装一个火狐浏览器,我就可以在手机上查看电脑上所收藏的网站了.然后我就去安卓应用市场下载了最新版的火狐浏览器.令人奇怪的是,我在 ...
- FMDB浅析(思想)
http://www.cnblogs.com/OTgiraffe/p/5931800.html 一.FMDB介绍 FMDB是一种第三方的开源库,FMDB就是对SQLite的API进行了封装,加上了面向 ...
- 2018.4.15 Mac系统下如何使用StartUml画好需求分析的类图 (同样适用于windows)
Mac如何使用StartUml (同样适用于windows) 左侧边栏的英文含义及其用法 关联(Association) [关联关系]:是一种拥有的关系,它使一个类知道另一个类的属性和方法:如:老师与 ...
- stixel world论文总结
1.The Stixel World - A Compact Medium Level Representation of the 3D-World:http://pdfs.semanticschol ...
- linux ecrypt decrypt
reference ecrypt vickey | openssl enc -aes-256-cbc -a -salt -pass pass:wu decrypt echo U2FsdGVkX1+Hn ...
- 解决windows系统下打开应用弹出丢失libmysql.dll的问题
只要把下载libmysql.dll,放到exe应用程序的所在目录,就可以运行,libmysql.dll有32位和64位版本,可以分别测试一下行不行,如果不行在换一个 版本试试.libmysql.dll ...
- Object-C知识点 (五) NSObject的继承关系
这篇文章主要介绍常用的继承自NSObject的类,方便朋友们查看和面试前查看使用!!! 结构图: 更多内容--> 博客导航 每周一篇哟!!! 有任何关于iOS开发的问题!欢迎下方留言!!!或者邮 ...
- Boo who-freecodecamp算法题目
Boo who 1.要求 检查一个值是否是基本布尔类型,并返回 true 或 false. 基本布尔类型即 true 和 false 2.思路 利用switch语句判断输入的数据是true/false ...
- 【上下界网络流 费用流】bzoj2055: 80人环游世界
EK费用流居然写错了…… Description 想必大家都看过成龙大哥的<80天环游世界>,里面的紧张刺激的打斗场面一定给你留下了深刻的印象.现在就有这么 一个80人的团 ...
- 初涉斯坦纳树&&bzoj4774: 修路
斯坦纳树的基础应用 斯坦纳树有什么用 个人一点粗浅理解…… 最基本形式的斯坦纳树问题(以下简称母问题):给定图G和一个关键点集V.求在G中选取一个权值最小(这里权值可以有很多变式)的边集E使V中的点两 ...