BZOJ3231: [Sdoi2008]递归数列

Description

一个由自然数组成的数列按下式定义:
对于i <= kai = bi
对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k
其中bj和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。

Input

由四行组成。
第一行是一个自然数k
第二行包含k个自然数b1, b2,...,bk
第三行包含k个自然数c1, c2,...,ck
第四行包含三个自然数mnp

Output

仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。

Sample Input

2
1 1
1 1
2 10 1000003

Sample Output

142

HINT

对于100%的测试数据:
1<= k<=15
1 <= m <= n <= 1018


题解Here!

矩阵快速幂的沙茶题。
设$Ans(l,r)=\sum_{i=l}^ra_i$。
差一下分:$Ans(l,r)=Ans(1,r)-Ans(1,l-1)$
这种题只要构造出矩阵就万事大吉了。
我们很容易想到把$a_1,a_2,a_3,...,a_k$全部放到矩阵中。
但是求和怎么办?
没事,一并放到矩阵中。
设$sum(x)=\sum_{i=1}^xa_i$。
有这个式子:$$sum(x+1)=sum(x)+a_{x+1}=sum(x)+c_1\times a_{x}+c_2\times a_{x-1}+...+c_k\times a_{x-k+1}$$
所以我们构造出矩阵长这个样:$$\left[\begin{array}{}0&0&0&...&0&c_k&c_k\\1&0&0&...&0&c_{k-1}&c_{k-1}\\0&1&0&...&0&c_{k-2}&c_{k-2}\\0&0&1&...&0&c_{k-3}&c_{k-3}\\&&&......\\0&0&0&...&1&c_1&c_1\\0&0&0&...&0&0&1\end{array}\right]$$
最初的矩阵就是这样:$$\left[\begin{array}{}a_1&a_2&a_3&...&a_k&sum(k)\end{array}\right]$$
而$a_i=b_i,i\in [1,k]$。
然后就可以愉快地跑矩阵快速幂了。
附代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#define MAXN 20
using namespace std;
long long n,m,p,k;
long long b[MAXN],c[MAXN],sum[MAXN];
struct node{
long long val[MAXN][MAXN];
node(){
for(int i=0;i<=19;i++)
for(int j=0;j<=19;j++)
val[i][j]=0;
}
friend node operator *(node x,node y){
node ret;
for(int i=1;i<=k+1;i++)
for(int j=1;j<=k+1;j++){
ret.val[i][j]=0;
for(int l=1;l<=k+1;l++){
ret.val[i][j]+=x.val[i][l]*y.val[l][j]%p;
ret.val[i][j]%=p;
}
}
return ret;
}
friend node operator ^(node x,long long w){
node s;
for(int i=1;i<=k+1;i++)s.val[i][i]=1;
while(w){
if(w&1)s=s*x;
x=x*x;
w>>=1;
}
return s;
}
}a[3];
inline long long read(){
long long date=0,w=1;char c=0;
while(c<'0'||c>'9'){if(c=='-')w=-1;c=getchar();}
while(c>='0'&&c<='9'){date=date*10+c-'0';c=getchar();}
return date*w;
}
long long solve(long long x,int id){
if(x<=k)return sum[x];
node ans;
for(int i=1;i<=k;i++)ans.val[1][i]=b[i];
ans.val[1][k+1]=sum[k];
ans=ans*(a[id]^(x-k));
return ans.val[1][k+1]%p;
}
void work(){
long long ans1=solve(n,1),ans2=solve(m-1,2);
printf("%lld\n",(ans1-ans2+p)%p);
}
void init(){
k=read();
sum[0]=0;
for(int i=1;i<=k;i++){
b[i]=read();
sum[i]=sum[i-1]+b[i];
}
for(int i=1;i<=k;i++)c[i]=read();
m=read();n=read();p=read();
a[1].val[k+1][k+1]=a[2].val[k+1][k+1]=1;
for(int i=1;i<k;i++)a[1].val[i+1][i]=a[2].val[i+1][i]=1;
for(int i=1;i<=k;i++)a[1].val[i][k]=a[1].val[i][k+1]=a[2].val[i][k]=a[2].val[i][k+1]=c[k-i+1];
}
int main(){
init();
work();
return 0;
}

BZOJ3231: [Sdoi2008]递归数列的更多相关文章

  1. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  2. BZOJ-3231 [SDOI2008]递归数列

    转成矩阵连乘后,矩阵快速幂加速解决. 一开始没把需要longlong的变量补全..而且没初始化2333 #include <cstdlib> #include <cstdio> ...

  3. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  4. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  5. 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列

    [SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...

  6. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  7. P2461 [SDOI2008]递归数列

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj 和 cj ...

  8. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  9. [SDOI2008]递归数列

    嘟嘟嘟 裸的矩阵快速幂,构造一个\((k + 1) * (k + 1)\)的矩阵,把sum[n]也放到矩阵里面就行了. #include<cstdio> #include<iostr ...

随机推荐

  1. Python入门--16--模块

    模块的定义: 模块是一个包含所有你定义的函数和变量的文件,其后缀是.py.模块可以被别的程序引入,以使用该模块中的函数等功能 比如 import random secret=random.randin ...

  2. HDU 4749: Parade Show

    看大神代码,发现上交大神很棒的一个思路 题意: 在源数字串中找出尽量多的连续子串,要求子串任意两值的大小关系与目标串相同位置的值的大小关系相同.求源串能拿出的子串的最大数量. 关键词: RK-Hash ...

  3. Redis监控工具—Redis-stat、RedisLive

    Redis监控工具—Redis-stat.RedisLive https://blog.csdn.net/u010022051/article/details/51104681

  4. for 、foreach 、iterator 三种遍历方式的比较

    习惯用法 for.foreach循环.iterator迭代器都是我们常用的一种遍历方式,你可以用它来遍历任何东西:包括数组.集合等 for 惯用法: List<String> list = ...

  5. Elasticsearch分词导致的查找错误

    这周在做视频搜索的过程中遇到一个问题,就是用下面的查询表达式去Elasticsearch检索,检索不到想要的结果.查询语句如下: 而查询的字段的值为: "mergeVideoName&quo ...

  6. 为VLC增加在线字幕插件VLSub

    VLC的在在线字幕插件VLSub,官网:https://github.com/exebetche/vlsub. 原理是通过搜索全球最大的字幕网站https://www.opensubtitles.or ...

  7. php 打印今天,昨天,本周,上周,当月,上月,本季,上季,今年,去年数据

    if($filter['mode']) { switch ($filter['mode']) { case 1://今天的数据 $time_start = date("Y-m-d H:i:s ...

  8. HDOJ1071

    The area   拿到题的第一想法,又是一道水题,知道P1.P2.P3三点的坐标,就能够确定抛物线的公式.确定抛物线的公式就能够进行积分,然后就没有然后了.纯粹的数学题. #include< ...

  9. 【转载】GitHub中国区前100名到底是什么样的人

    转载了这篇文章: http://www.jianshu.com/p/d29cba7934c9 这篇文章真是太牛了!转载过来涨涨见识,同时好好励志一把.还有,ruanyifeng怎么长那样... 哈 另 ...

  10. 老司机找bug的十年心路历程

    一.码畜:靠编译器帮自己查语法错误 消灭笔误:编写适合程序猿的键盘练习 if (常量==变量或表达式) 使用goto接力超长的if,switch 连续的if还是if elseif 多个条件的组合:精心 ...