https://www.luogu.org/fe/problem/P3935

求:

\(F(n)=\sum\limits_{i=1}^{n}d(i)\)

枚举因子\(d\),每个因子\(d\)都给其倍数贡献\(1\),倍数一共有\(\lfloor\frac{n}{d}\rfloor\)个。

\(F(n)=\sum\limits_{d=1}^{n}\lfloor\frac{n}{d}\rfloor\)

套个分块,上。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll; const int mod=998244353; ll F(ll n){
ll res=0;
for(ll l=1,r;l<=n;l=r+1){
ll t=n/l;
r=n/t;
res+=t*(r-l+1);
if(res>=mod)
res%=mod;
}
return res;
} int main() {
#ifdef Yinku
freopen("Yinku.in","r",stdin);
#endif // Yinku
ll l,r;
scanf("%lld%lld\n",&l,&r);
printf("%lld\n",(F(r)-F(l-1)+mod)%mod);
return 0;
}

洛谷 - P3935 - Calculating - 整除分块的更多相关文章

  1. 洛谷P3935 Calculating(整除分块)

    题目链接:洛谷 题目大意:定义 $f(x)=\prod^n_{i=1}(k_i+1)$,其中 $x$ 分解质因数结果为 $x=\prod^n_{i=1}{p_i}^{k_i}$.求 $\sum^r_{ ...

  2. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

  3. [洛谷P3935]Calculating

    题目大意:设把$x$分解质因数的结果为$x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$,令$f(x)=(k_1+1)(k_2+1)\cdots (k_n+1)$,求$\su ...

  4. [P3935] Calculating - 整除分块

    容易发现题目要求的 \(f(x)\) 就是 \(x\) 的不同因子个数 现在考虑如何求 \(\sum_{i=1}^n f(i)\),可以考虑去算每个数作为因子出现了多少次,很容易发现是 \([n/i] ...

  5. 洛谷 P3935 Calculating 题解

    原题链接 一看我感觉是个什么很难的式子-- 结果读完了才发现本质太简单. 算法一 完全按照那个题目所说的,真的把质因数分解的结果保留. 最后乘. 时间复杂度:\(O(r \sqrt{r})\). 实际 ...

  6. 洛谷 P3935 Calculating

    虽然对这道题没有什么帮助,但是还是记一下:约数个数也是可以线性筛的 http://www.cnblogs.com/xzz_233/p/8365414.html 测正确性题目:https://www.l ...

  7. 洛谷P3935 Calculation [数论分块]

    题目传送门 格式难调,题面就不放了. 分析: 实际上这个就是这道题的升级版,没什么可讲的,数论分块搞就是了. Code: //It is made by HolseLee on 18th Jul 20 ...

  8. 洛谷P4198 楼房重建 (分块)

    洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...

  9. 洛谷P4135 作诗 (分块)

    洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...

随机推荐

  1. 无线(仅WIFI)攻击思路总结

    从事信息安全相关工作5年了,虽然主要工作是安全产品售前.安全服务等方向,但既然选择了安全,想必都是有点黑客情节的,因此也前前后后杂七杂八的学了点东西.最近在研究无线(主要是WIFI)安全,相关书籍看了 ...

  2. JSP学习笔记(一)

    JSP是基于JAVA语言的,区分大小写,HTML不区分大小写 如何建立Web服务目录? 1.在Webapps下面建立Web服务目录MYJSP 在Webapps下面新建文件夹MYJSP,将写好的jsp文 ...

  3. PythonCookBook笔记——字符串和文本

    字符串和文本 使用多个分隔符分割字串 使用正则re.split()方法. >>> line = 'asdf fjdk; afed, fjek,asdf, foo' >>& ...

  4. hive编程入门课程(加精)

    hive编程入门课程 http://wenku.baidu.com/link?url=BfyZWjz48G_6UJImzWw39OLB0sUrIYEYxoxNpaFbADUQekmOvQy4FPY1f ...

  5. 记使用WaitGroup时的一个错误

    记使用WaitGroup时的一个错误 近期重构我之前写的server代码时,不当使用了WaitGroup,碰到了个错误,记录下. package main import ( "fmt&quo ...

  6. MVC——分页

    添加类PageBar.cs using System; using System.Collections.Generic; using System.Linq; using System.Text; ...

  7. WinCE下使用C#的几个小技巧

    1.我们知道,在使用Windows的开发机上用C#启动一个外部程序的方法有很多,但这些方法用在使用WinCE的目标工控机上都无能为力,现在小嫚儿以打开一个IE为例,介绍如何在WinCE下使用C#来打开 ...

  8. BZOJ 2069 POI2004 ZAW 堆优化Dijkstra

    题目大意:给定一张无向图.每条边从两个方向走各有一个权值,求从点1往出走至少一步之后回到点1且不经过一条边多次的最短路 显然我们须要从点1出发走到某个和点1相邻的点上,然后沿最短路走到还有一个和点1相 ...

  9. 区块链+AI将给区块链带来怎样的改变?

    区块链和人工智能技术都是互联网时代最新.最热的技术,不仅可以改变我们生活,还能产生巨大的财富,为此国家大力支持发展,科技巨头们也纷纷布局.那区块链与人工智能结合,对区块链技术而言会产生什么样的化学反应 ...

  10. 03-树2 List Leaves(25 point(s)) 【Tree】

    03-树2 List Leaves(25 point(s)) Given a tree, you are supposed to list all the leaves in the order of ...