【最短路径树】51nod1443 路径和树
并不是什么高端操作并且一些模型会用到
Description
给定一幅无向带权连通图G = (V, E) (这里V是点集,E是边集)。从点u开始的最短路径树是这样一幅图G1 = (V, E1),其中E1是E的子集,并且在G1中,u到所有其它点的最短路径与他在G中是一样的。
现在给定一幅无向带权连通图G和一个点u。你的任务是找出从u开始的最短路径树,并且这个树中所有边的权值之和要最小。
Input
单组测试数据。
第一行有两个整数n和m(1 ≤ n ≤ 3*10^5, 0 ≤ m ≤ 3*10^5),表示点和边的数目。
接下来m行,每行包含3个整数 ui, vi, wi ,表示ui和vi之间有一条权值为wi的无向边(1 ≤ ui,vi ≤ n, 1 ≤ wi ≤ 10^9)。
输入保证图是连通的。
最后一行给出一个整数u (1 ≤ u ≤ n),表示起点。
Output
输出这棵树的最小的权值之和。
Input示例
3 3
1 2 1
2 3 1
1 3 2
3
Output示例
2
题目大意
求最短路径树的最小权值和
题目分析
最短路径树是原图的一种生成树。注意以不同的点为根产生的最短路径树是不一样的(道理同最短路)。
这里要求的是“最小权值和”,听上去好像很麻烦的样子:要把跑的最短路的边拎出来,再做一遍最小生成树……
但是实际上我们发现它是满足贪心性质的,并且并不会影响后面元素的取值。
所以只需要维护一个$pre[i]$表示转移到$i$的最小边权,然后在dij过程中再加一句判断就可以了。
来自hzq的告诫:“能用堆优化dij就用堆优化的dij,SPFA尽量尽量不要写。系统堆优化的dij有这么难写吗?”
#include<bits/stdc++.h>
typedef long long ll;
const int maxn = ;
const int maxm = ;
const ll INF = ; ll dis[maxn],pre[maxn],ans;
struct cmp
{
bool operator ()(int a, int b) const
{
return dis[a] > dis[b];
}
};
struct Edge
{
int y;
ll val;
Edge(int a=, ll b=):y(a),val(b) {}
}edges[maxm];
int n,m,s;
int head[maxn],nxt[maxm],edgeTot;
std::priority_queue<int, std::vector<int>, cmp> q; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
void addedge(int u, int v, ll w)
{
edges[++edgeTot] = Edge(v, w), nxt[edgeTot] = head[u], head[u] = edgeTot;
}
int main()
{
memset(head, -, sizeof head);
n = read(), m = read();
for (int i=; i<=m; i++)
{
int u = read(), v = read(), w = read();
addedge(u, v, w), addedge(v, u, w);
dis[i] = INF;
}
s = read(), q.push(s), dis[s] = ;
while (q.size())
{
int tt = q.top();
q.pop();
for (int i=head[tt]; i!=-; i=nxt[i])
{
int v = edges[i].y;
ll w = edges[i].val;
if (dis[v] > dis[tt]+w||(dis[v]==dis[tt]+w&&pre[v] > w))
dis[v] = dis[tt]+w, pre[v] = w, q.push(v);
}
}
for (int i=; i<=n; i++)
ans += pre[i];
printf("%lld\n",ans);
return ;
}
END
【最短路径树】51nod1443 路径和树的更多相关文章
- [51nod1443]路径和树
给定一幅无向带权连通图G = (V, E) (这里V是点集,E是边集).从点u开始的最短路径树是这样一幅图G1 = (V, E1),其中E1是E的子集,并且在G1中,u到所有其它点的最短路径与他在G中 ...
- 51nod 1443 路径和树(最短路)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1443 1443 路径和树 题目来源: CodeForces ...
- 51nod 1443 路径和树(最短路树)
题目链接:路径和树 题意:给定无向带权连通图,求从u开始边权和最小的最短路树,输出最小边权和. 题解:构造出最短路树,把存留下来的边权全部加起来.(跑dijkstra的时候松弛加上$ < $变成 ...
- 2545 ACM 博客 比较树的路径长短
题目:http://acm.hdu.edu.cn/showproblem.php?pid=2545 题意:比较树的路径长短 思路:利用数组存入父节点的值, 例如: 5 2 1 2 1 3 3 4 3 ...
- 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 从B 树、B+ 树、B* 树谈到R 树
从B 树.B+ 树.B* 树谈到R 树 作者:July.weedge.Frankie.编程艺术室出品. 说明:本文从B树开始谈起,然后论述B+树.B*树,最后谈到R 树.其中B树.B+树及B*树部分由 ...
- 【BZOJ-3589】动态树 树链剖分 + 线段树 + 线段覆盖(特殊的技巧)
3589: 动态树 Time Limit: 30 Sec Memory Limit: 1024 MBSubmit: 405 Solved: 137[Submit][Status][Discuss] ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
随机推荐
- D. Merge Equals(from Educational Codeforces Round 42 (Rated for Div. 2))
模拟题,运用强大的stl. #include <iostream> #include <map> #include <algorithm> #include < ...
- Image.resize()和Image.thumbnail()的区别
Image.resize()和Image.thumbnail()的区别 根据代码和代码注释, 这两个函数都是对图片进行缩放, 两者的主要区别如下: resize()函数会返回一个Image对象, th ...
- Django quick tutorial
--第一部分,快速开始-- 01. Django简介
- TYVJ 2032 搜索
P2032 「Poetize9」升降梯上 描述 开启了升降梯的动力之后,探险队员们进入了升降梯运行的那条竖直的隧道,映入眼帘的是一条直通塔顶的轨道.一辆停在轨道底部的电梯.和电梯内一杆控制电梯升降的巨 ...
- bryce1010专题训练——Splay树
Prob Hint BZOJ 3323 文艺平衡树 区间翻转 BZOJ 1251 序列终结者 区间翻转,询问最值 BZOJ 1895 supermemo 区间加,翻转,剪切,询问最值.点插入,删除. ...
- Gym - 101147J Whistle's New Car 树上差分
J. Whistle's New Car time limit per test 15 seconds memory limit per test 512 megabytes input car.in ...
- vim编辑器高级应用
1. vim主要模式介绍 命令模式.命令行模式.编辑模式 字符操作:i 当前插入, I行首插入, a当前字符之后插入,A行首插入, ESC退出当前模式 2. vim命令模式 3. vim插入模式 4. ...
- MapWindowsPoints函数使用
MapWindowPoints的百度解释: 函数功能:该函数把相对于一个窗口的坐标空间的一组点映射成相对于另一窗口的坐标空 的一组点. 函数原型:int MapWindowPoints(HWND ...
- 模拟一次CSRF(跨站请求伪造)例子,适合新手
GET请求伪造 有一个论坛网站,网站有一个可以关注用户的接口,但是必须登录的用户才可以关注其他用户. 这个网站的网站是www.a.com 有一天有一个程序员想提高自己的知名度,决定利用CSRF让大家关 ...
- cocoapods学习
1.安装 http://stackoverflow.com/questions/16459028/rvm-install-error-running-requirements-osx-port-ins ...