Tiling Up Blocks
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4675   Accepted: 1824

Description

Michael The Kid receives an interesting game set from his grandparent as his birthday gift. Inside the game set box, there are n tiling blocks and each block has a form as follows: 

Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle. 
It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'. 
Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B. 

Input

Several sets of tiling blocks. The inputs are just a list of integers.For each set of tiling blocks, the first integer n represents the number of blocks within the game box. Following n, there will be n lines specifying parameters of blocks in B; each line contains exactly two integers, representing left and middle parameters of the i-th block, namely, li and mi. In other words, a game box is just a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). 
Note that n can be as large as 10000 and li and mi are in the range from 1 to 100. 
An integer n = 0 (zero) signifies the end of input.

Output

For each set of tiling blocks B, output the number of the tallest tiling blocks can be made out of B. Output a single star '*' to signify the end of 
outputs.

Sample Input

3
3 2
1 1
2 3
5
4 2
2 4
3 3
1 1
5 5
0

Sample Output

2
3
*
题目大意:给定n个砖块的长和宽,只有当x2>=x1&&y2>=y1时 n2可以放在n1上 问最高能落多高。
解题方法:求最大不上升子序列,用动态规划。
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std; int main()
{
int w[][];
int dp[][];
int n;
while(scanf("%d", &n) != EOF)
{
if (n == )
{
printf("*\n");
break;
}
int a, b;
memset(w, , sizeof(w));
memset(dp, , sizeof(dp));
for (int i = ; i <= n; i++)
{
scanf("%d%d", &a, &b);
w[a][b]++;
}
for (int i = ; i <= ; i++)
{
for (int j = ; j <= ; j++)
{
dp[i][j] = max(dp[i - ][j], dp[i][j - ]) + w[i][j];
}
}
printf("%d\n", dp[][]);
}
return ;
}
 

POJ 1609 Tiling Up Blocks的更多相关文章

  1. poj 1609 dp

    题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...

  2. poj 2506 Tiling(递推 大数)

    题目:http://poj.org/problem?id=2506 题解:f[n]=f[n-2]*2+f[n-1],主要是大数的相加; 以前做过了的 #include<stdio.h> # ...

  3. POJ 1052 Plato's Blocks

      Plato's Blocks Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 734   Accepted: 296 De ...

  4. [ACM] POJ 2506 Tiling (递归,睑板)

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7487   Accepted: 3661 Descriptio ...

  5. POJ 2506 Tiling

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7437   Accepted: 3635 Descriptio ...

  6. poj 2506 Tiling(高精度)

    Description In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? Here is a sample tili ...

  7. HOJ 2124 &POJ 2663Tri Tiling(动态规划)

    Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...

  8. POJ 2506 Tiling(递推+大整数加法)

    http://poj.org/problem?id=2506 题意: 思路:递推.a[i]=a[i-1]+2*a[i-2]. 计算的时候是大整数加法.错了好久,忘记考虑1了...晕倒. #includ ...

  9. poj 2506 Tiling(java解法)

    题目链接:id=2506">http://poj.org/problem?id=2506 本题用的java解的.由于涉及到大数问题,假设对java中的大数操作不熟悉请点这儿:链接 思路 ...

随机推荐

  1. (转载)资源字典(Pro WPF 学习)

    原地址:http://www.cnblogs.com/yxhq/archive/2012/07/09/2582508.html 1.创建资源字典 下面是一个资源字典(AppBrushes.xaml), ...

  2. Nginx FastCGI PHP

    We can see this comment in nginx.conf. # pass the PHP scripts to FastCGI server listening on 127.0.0 ...

  3. BZOJ 3712: [PA2014]Fiolki 倍增+想法

    3712: [PA2014]Fiolki Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 437  Solved: 115[Submit][Status ...

  4. 如何处理错误消息Please install the Linux kernel header files

    Please install the Linux kernel "header" files matching the current kernel 当我启动minilkube时遇 ...

  5. javaweb基础(5)_servlet原理

    一.Servlet简介 Servlet是sun公司提供的一门用于开发动态web资源的技术. Sun公司在其API中提供了一个servlet接口,用户若想用发一个动态web资源(即开发一个Java程序向 ...

  6. 小试牛刀,建立jsp网页与导出war包

    一.建立jsp网页 首先创建一个动态项目(我们学习的是动态网) 二.检查编码utf-8有没错误. 如有错误就是没有设置eclipse,请按照eclipse设置 编写一段代码,进行了解 三.导出一个wa ...

  7. Oracle11g 数据库的导入导出

    导出: 全部: exp imagesys/imagesys@orcl file=/icms/20170116.dmp full=y 用户: exp imagesys/imagesys @orcl fi ...

  8. 【STL学习笔记】一、STL体系

    目录 1.标准库以header files形式呈现 2.namespce命名空间 3.STL与OO 4.STL六组件及其关系 5.STL组件例子 6.range-based for statement ...

  9. error PRJ0019: 工具从 “正在执行生成后事件... ”

    error PRJ0019: 工具从"正在执行生成后事件..." 原因是属性->生成事件->生成后事件 命令行设置错误导致的,修改即可 因为path前面有空格,所以这里 ...

  10. 【动态规划】51nod1780 完美序列

    巧妙的转化:f前两维大小开反TLE了一发…… 如果一个序列的相邻两项差的绝对值小于等于1,那么我们说这个序列是完美的. 给出一个有序数列A,求有多少种完美序列排序后和数列A相同. Input 第一行一 ...