Tiling Up Blocks
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4675   Accepted: 1824

Description

Michael The Kid receives an interesting game set from his grandparent as his birthday gift. Inside the game set box, there are n tiling blocks and each block has a form as follows: 

Each tiling block is associated with two parameters (l,m), meaning that the upper face of the block is packed with l protruding knobs on the left and m protruding knobs on the middle. Correspondingly, the bottom face of an (l,m)-block is carved with l caving dens on the left and m dens on the middle. 
It is easily seen that an (l,m)-block can be tiled upon another (l,m)-block. However,this is not the only way for us to tile up the blocks. Actually, an (l,m)-block can be tiled upon another (l',m')-block if and only if l >= l' and m >= m'. 
Now the puzzle that Michael wants to solve is to decide what is the tallest tiling blocks he can make out of the given n blocks within his game box. In other words, you are given a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). The objective of the problem is to decide the number of tallest tiling blocks made from B. 

Input

Several sets of tiling blocks. The inputs are just a list of integers.For each set of tiling blocks, the first integer n represents the number of blocks within the game box. Following n, there will be n lines specifying parameters of blocks in B; each line contains exactly two integers, representing left and middle parameters of the i-th block, namely, li and mi. In other words, a game box is just a collection of n blocks B = {b1, b2, . . . , bn} and each block bi is associated with two parameters (li,mi). 
Note that n can be as large as 10000 and li and mi are in the range from 1 to 100. 
An integer n = 0 (zero) signifies the end of input.

Output

For each set of tiling blocks B, output the number of the tallest tiling blocks can be made out of B. Output a single star '*' to signify the end of 
outputs.

Sample Input

3
3 2
1 1
2 3
5
4 2
2 4
3 3
1 1
5 5
0

Sample Output

2
3
*
题目大意:给定n个砖块的长和宽,只有当x2>=x1&&y2>=y1时 n2可以放在n1上 问最高能落多高。
解题方法:求最大不上升子序列,用动态规划。
#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std; int main()
{
int w[][];
int dp[][];
int n;
while(scanf("%d", &n) != EOF)
{
if (n == )
{
printf("*\n");
break;
}
int a, b;
memset(w, , sizeof(w));
memset(dp, , sizeof(dp));
for (int i = ; i <= n; i++)
{
scanf("%d%d", &a, &b);
w[a][b]++;
}
for (int i = ; i <= ; i++)
{
for (int j = ; j <= ; j++)
{
dp[i][j] = max(dp[i - ][j], dp[i][j - ]) + w[i][j];
}
}
printf("%d\n", dp[][]);
}
return ;
}
 

POJ 1609 Tiling Up Blocks的更多相关文章

  1. poj 1609 dp

    题目链接:http://poj.org/problem?id=1609 #include <cstdio> #include <cstring> #include <io ...

  2. poj 2506 Tiling(递推 大数)

    题目:http://poj.org/problem?id=2506 题解:f[n]=f[n-2]*2+f[n-1],主要是大数的相加; 以前做过了的 #include<stdio.h> # ...

  3. POJ 1052 Plato's Blocks

      Plato's Blocks Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 734   Accepted: 296 De ...

  4. [ACM] POJ 2506 Tiling (递归,睑板)

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7487   Accepted: 3661 Descriptio ...

  5. POJ 2506 Tiling

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7437   Accepted: 3635 Descriptio ...

  6. poj 2506 Tiling(高精度)

    Description In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles? Here is a sample tili ...

  7. HOJ 2124 &POJ 2663Tri Tiling(动态规划)

    Tri Tiling Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9016 Accepted: 4684 Descriptio ...

  8. POJ 2506 Tiling(递推+大整数加法)

    http://poj.org/problem?id=2506 题意: 思路:递推.a[i]=a[i-1]+2*a[i-2]. 计算的时候是大整数加法.错了好久,忘记考虑1了...晕倒. #includ ...

  9. poj 2506 Tiling(java解法)

    题目链接:id=2506">http://poj.org/problem?id=2506 本题用的java解的.由于涉及到大数问题,假设对java中的大数操作不熟悉请点这儿:链接 思路 ...

随机推荐

  1. LibreOJ #2130. 「NOI2015」软件包管理器

    内存限制:256 MiB 时间限制:1000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 上传者: 匿名 树链剖分+线段树 屠龙宝刀点击就送 #include <vector> ...

  2. SAP ERP和C4C Account和Contact的双向同步

    Account和Contact是C4C里唯一支持可以和ERP进行双向同步的主数据类别. C4C里创建一个Account:Mouser Electronics 在C4C里保存Account,自动同步到E ...

  3. [学习笔记] C++ 历年试题解析(二)--程序题

    发现程序题也挺有价值的. 顺便记录下来几道. 1.题目 #include <iostream> #include <cstring> using namespace ① std ...

  4. mangoDB笔记

    1.  查询 db.表.find().pretty() find(querry,project) pretty()格式化显示 findOne()  返回一条结果 比较 db.Decl_In.find( ...

  5. 2018.3.16 Ubuntu 解决中文乱码问题

    一.乱码的样子类似: °²Àï¿ü ÒÁ¸ñÀ³Ï£ÑÇ˹,°²Àï¿ü ÒÁ¸ñÀ³Ï£ÑÇ˹ 这种乱码称为Gedit中文乱码 打开部分Windows下的txt文本文件的时候,中文显示为乱码.但 ...

  6. C07 模块化开发信息管理系统案例

    目录 需求分析 问题分析 开发阶段 需求分析 总体需求 学员信息管理系统支持以下功能 增加学员信息功能 删除学员信息功能 查询学员信息功能 修改学员信息功能 输出所有学员信息功能 退出系统 其他需求 ...

  7. 《毛毛虫团队》第九次团队作业:BETA冲刺与团队项目验收

    一:实验名称:Beta冲刺与验收准备 二:实验目的与要求 (1)掌握软件黑盒测试技术: (2)学会编制软件项目总结PPT.项目验收报告: (3)掌握软件项目验收内容,验收流程. 三.实验内容与步骤 任 ...

  8. laydate时间控件绑定回调事件

    onclick="laydate({istime: true, format: 'YYYY-MM-DD',choose:checkDate});" //回调函数内容 functio ...

  9. axure的基本使用方法(侧边导航栏的制作)

    1.创建一个动态面板control 2.在home中创建动态面板homepage和movepage并且完成布局 3.给home添加移动事件 4.给按钮添加点击事件 5.大功告成

  10. USACO08FEB Hotel

    题目传送门 线段树维护区间 线段树结构体 struct zzz{ int l,r,mi; //l为以左端点的为起点的最长子串 //r为以右端点为终点的最长子串 //mi是区间内部的最长子串 }tree ...