HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路
给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值。
首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为是回路,所以你的开始点就会被访问多一次,所以如果是欧拉回路的话,还需要O(n)扫一次,枚举每个点作为起点。
欧拉通路的话,结果是固定的,因为只能从奇数度小的那个点作为起点,奇数度大的那个点作为终点。
关于点的访问次数:anstime = Degree[i] / 2; //如果是奇数的,还要加上一。
因为每两个度就表示:一进一出,度数为2,所以才访问一次。
奇数度的话,剩下的那一个度就是用来出或则进的,
然后如果有一个点的度数是0,则可以说明图不联通,
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = 1e5 + ;
int a[maxn];
int Degree[maxn];
void init(int n) {
for (int i = ; i <= n; ++i) {
Degree[i] = ;
}
}
void work() {
int n, m;
scanf("%d%d", &n, &m);
init(n);
for (int i = ; i <= n; ++i) scanf("%d", &a[i]);
for (int i = ; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
Degree[u]++;
Degree[v]++;
}
int root = ;
root = ;
for (int i = ; i <= n; ++i) {
root += Degree[i] & ;
if (Degree[i] == ) {
printf("Impossible\n");
return;
}
}
if (!(root == || root == )) {
printf("Impossible\n");
return;
}
int ans = ;
int tans = ;
for (int i = ; i <= n; ++i) {
int tim = Degree[i] / + (Degree[i] & );
tim &= ;
tans ^= a[i] * tim;
}
if (root == ) {
for (int i = ; i <= n; ++i) {
int gg = tans ^ a[i];
ans = max(ans, gg);
}
} else {
ans = tans;
}
printf("%d\n", ans);
} int main() {
#ifdef local
freopen("data.txt","r",stdin);
#endif
// printf("%d\n", 1 ^ 3 ^ 4 ^ 5 ^ 6);
int t;
scanf("%d", &t);
while (t--) work();
return ;
}
HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路的更多相关文章
- POJ 1300 欧拉通路&欧拉回路
系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...
- HDU 5883 The Best Path (欧拉路或者欧拉回路)
题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 析:由欧拉路性质,奇度点数量为0或2.一个节点被进一次出一次,度减2,产生一次贡献,因此节点 i 的贡献为 ...
- ACM/ICPC 之 DFS求解欧拉通路路径(POJ2337)
判断是欧拉通路后,DFS简单剪枝求解字典序最小的欧拉通路路径 //Time:16Ms Memory:228K #include<iostream> #include<cstring& ...
- poj 2513 连接火柴 字典树+欧拉通路 好题
Colored Sticks Time Limit: 5000MS Memory Limit: 128000K Total Submissions: 27134 Accepted: 7186 ...
- poj2513- Colored Sticks 字典树+欧拉通路判断
题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...
- hdu1116有向图判断欧拉通路判断
Play on Words Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
- Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash
题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点 或者 ...
- 欧拉回路&欧拉通路判断
欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路.具有欧拉回路的图成为欧拉图. 判断欧拉通路是否存在的方法 ...
- POJ2513Colored Sticks(欧拉通路)(字典树)(并查集)
Colored Sticks Time Limit: 5000MS Memory ...
随机推荐
- codevs 4939 欧拉函数
传送门 4939 欧拉函数 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 钻石 Diamon 题目描述 Description 输入一个数n,输出小于n且与n互素的整数个 ...
- uC/OS-II源码分析(三)
首先来了解下实时系统的基本概念: 1) 临界区,共享资源,任务(类似于进程),任务切换,任务调度,可剥夺型内核,可重入函数,动态优先级调度, 2) 如何处理优先级反转问题.这个问题描述如下:有三个任务 ...
- 微信小程序 加载 HTML 标签
肯定有小伙伴遇到过这个问题:加载的数据是一堆HTML 标签这就尴尬了,因为小程序没有提供 webview 来加载这些 HTML.但是不用慌,小程序不提供我们可以自己造个新轮子,自己造不出新轮子咱们找到 ...
- 13 vue学习 package.json
一:package.json文件详解 管理你本地安装的npm包 .定义了这个项目所需要的各种模块,以及项目的配置信息(比如名称.版本.许可证等元数据).npm install命令根据这个配置文件,自动 ...
- github怎么创建一个项目,怎么添加一个ssh-key的客户
1.第一步:打开https://github.com/,登陆成功.单击猫图标,进入页面,单击[start a project] 第二步:输入项目名称,选择public公有,不收费的.单击确认成功. 第 ...
- AAAAAA
有可能被立案调查.暂停上市.退市风险警示*ST.特别处理ST的公司:银鸽投资(SH:600069).天山生物(SZ:300313).金贵银业(SZ:002716).美盛文化(SZ:002699).未名 ...
- 快速排序(java)
快速排序是冒泡排序的优化,是一种非常高效的排序, 甚至是目前为止最高效的排序,其思想是这样的:设数组a中存放了n个数据元素,low为数组的低端下标,high为数组的高端下标,从数组a中任取一个元素(通 ...
- H.264有四种画质级别
H264相关知识-poseidonqiu-ChinaUnix博客 H.264有四种画质级别分别是BP.EP.MP.HP: 1.BP-Baseline Profile:基本画质.支持I/P 帧,只支持无 ...
- JavaScript高级程序设计学习笔记第五章--引用类型
一.object类型 1.创建object类型的两种方式: 第一种,使用构造函数 var person = new Object();或者是var person={};/与new Object()等价 ...
- [51nod1035]最长的循环节
题意:输出<=n的数中倒数循环节长度最长的那个数 解题关键:http://w3.math.sinica.edu.tw/math_media/d253/25311.pdf https://wenk ...