给定一个图,要求选一个点作为起点,然后经过每条边一次,然后把访问过的点异或起来(访问一次就异或一次),然后求最大值。

首先为什么会有最大值这样的分类?就是因为你开始点选择不同,欧拉回路的结果不同,因为是回路,所以你的开始点就会被访问多一次,所以如果是欧拉回路的话,还需要O(n)扫一次,枚举每个点作为起点。

欧拉通路的话,结果是固定的,因为只能从奇数度小的那个点作为起点,奇数度大的那个点作为终点。

关于点的访问次数:anstime  = Degree[i] / 2; //如果是奇数的,还要加上一。

因为每两个度就表示:一进一出,度数为2,所以才访问一次。

奇数度的话,剩下的那一个度就是用来出或则进的,

然后如果有一个点的度数是0,则可以说明图不联通,

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL; #include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
const int maxn = 1e5 + ;
int a[maxn];
int Degree[maxn];
void init(int n) {
for (int i = ; i <= n; ++i) {
Degree[i] = ;
}
}
void work() {
int n, m;
scanf("%d%d", &n, &m);
init(n);
for (int i = ; i <= n; ++i) scanf("%d", &a[i]);
for (int i = ; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
Degree[u]++;
Degree[v]++;
}
int root = ;
root = ;
for (int i = ; i <= n; ++i) {
root += Degree[i] & ;
if (Degree[i] == ) {
printf("Impossible\n");
return;
}
}
if (!(root == || root == )) {
printf("Impossible\n");
return;
}
int ans = ;
int tans = ;
for (int i = ; i <= n; ++i) {
int tim = Degree[i] / + (Degree[i] & );
tim &= ;
tans ^= a[i] * tim;
}
if (root == ) {
for (int i = ; i <= n; ++i) {
int gg = tans ^ a[i];
ans = max(ans, gg);
}
} else {
ans = tans;
}
printf("%d\n", ans);
} int main() {
#ifdef local
freopen("data.txt","r",stdin);
#endif
// printf("%d\n", 1 ^ 3 ^ 4 ^ 5 ^ 6);
int t;
scanf("%d", &t);
while (t--) work();
return ;
}

HDU 5883 F - The Best Path 欧拉通路 & 欧拉回路的更多相关文章

  1. POJ 1300 欧拉通路&欧拉回路

    系统的学习一遍图论!从这篇博客开始! 先介绍一些概念. 无向图: G为连通的无向图,称经过G的每条边一次并且仅一次的路径为欧拉通路. 如果欧拉通路是回路(起点和终点相同),则称此回路为欧拉回路. 具有 ...

  2. HDU 5883 The Best Path (欧拉路或者欧拉回路)

    题意: n 个点 m 条无向边的图,找一个欧拉通路/回路使得这个路径所有结点的异或值最大. 析:由欧拉路性质,奇度点数量为0或2.一个节点被进一次出一次,度减2,产生一次贡献,因此节点 i 的贡献为 ...

  3. ACM/ICPC 之 DFS求解欧拉通路路径(POJ2337)

    判断是欧拉通路后,DFS简单剪枝求解字典序最小的欧拉通路路径 //Time:16Ms Memory:228K #include<iostream> #include<cstring& ...

  4. poj 2513 连接火柴 字典树+欧拉通路 好题

    Colored Sticks Time Limit: 5000MS   Memory Limit: 128000K Total Submissions: 27134   Accepted: 7186 ...

  5. poj2513- Colored Sticks 字典树+欧拉通路判断

    题目链接:http://poj.org/problem?id=2513 思路很容易想到就是判断欧拉通路 预处理时用字典树将每个单词和数字对应即可 刚开始在并查集处理的时候出错了 代码: #includ ...

  6. hdu1116有向图判断欧拉通路判断

    Play on Words Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

  7. Colored Sticks POJ - 2513 并查集+欧拉通路+字典树hash

    题意:给出很多很多很多很多个棒子 左右各有颜色(给出的是单词) 相同颜色的可以接在一起,问是否存在一种 方法可以使得所以棒子连在一起 思路:就是一个判欧拉通路的题目,欧拉通路存在:没奇度顶点   或者 ...

  8. 欧拉回路&欧拉通路判断

    欧拉回路:图G,若存在一条路,经过G中每条边有且仅有一次,称这条路为欧拉路,如果存在一条回路经过G每条边有且仅有一次, 称这条回路为欧拉回路.具有欧拉回路的图成为欧拉图. 判断欧拉通路是否存在的方法 ...

  9. POJ2513Colored Sticks(欧拉通路)(字典树)(并查集)

                                                             Colored Sticks Time Limit: 5000MS   Memory ...

随机推荐

  1. oracle数据库复习(1)

    数据库中的专业术语: 表:在数据库中存放数据所用的表 视图:数据库中的虚拟表.在视图中存放的是从数据表中查询出来的纪录 存储过程:存储过程是由SQL语句和控制流语句组成的代码块.存储过程在开发软件时, ...

  2. 2018.2.27 RF module distance test part I

    Last week,we finish 20  pcs EP2 sample for RF module, Fistly,we need to test PCBA  performance test ...

  3. labview初步理解

    1.labview是NI公司开发的一款以图形方式开发程序(G语言)的程序开发环境软件.它的作用与VS一样,是一种程序开发环境.只是vs是以文本语言开发环境而已. 2.labview最广泛应用于开发测试 ...

  4. sass与compass实战(读书笔记)

    // compass create myproject // compass compile // compass compile --force 重新编译未改动的 // compass compil ...

  5. 「UVA644」 Immediate Decodability(Trie

    题意翻译 本题有多组数据.每组数据给出一列以"9"结尾的仅包含'0'和'1'的字符串,如果里面有一个是另一个的子串,输出"Set &case is not imm ...

  6. bzoj 3872 [Poi2014]Ant colony——二分答案

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3872 可以倒推出每个叶子节点可以接受的值域.然后每个叶子二分有多少个区间符合即可. 注意一开 ...

  7. rmmod: chdir(/lib/modules): No such file or directory

    内核版本:linux3.4.20 交叉编译器:arm-linux-gcc 4.3.3 busybox :  busybox 1.20 问题: 使用rmmod会出现 rmmod : chdir(/lib ...

  8. 面向对象——final关键字

    继承的弊端:打破了封装性 解决方式:final final关键字的特点: 1.final是一个修饰符,即可以修饰类,也可以修饰方法,还可以修饰变量 2.final修饰的类不可以被继承 3.final修 ...

  9. ActiveRecord 的类型初始值设定项引发异常

    最近在研究ActiveRecord网上有很多贴子讲怎么用的.但自己照做就是出错. 最终定位在配置文件出错.应该是ActiveRecord有更新的原因.在国外的网站把配置复制了一份替换.问题解决了.我用 ...

  10. React库protypes属性

    Prop 验证 随着应用不断变大,保证组件被正确使用变得非常有用.为此我们引入propTypes.React.PropTypes 提供很多验证器 (validator) 来验证传入数据的有效性.当向 ...