洛谷 P2568 GCD
https://www.luogu.org/problemnew/show/P2568#sub
最喜欢题面简洁的题目了。
本题为求两个数的gcd是素数,那么我们将x和y拆一下,
假设p为$gcd(x,y)$,且p是一个素数,$x=a \times p , y = b \times p $。
然而要满足p的条件的话,a和b一定是互质的,满足$0 \le a,b \le \frac{n}{p} $
这样的话我们可以枚举这个质数p,将小于$\frac{n}{p}$的数,以及与它互质的数加起来。
互质的数的个数自然想到了欧拉函数,优化想加的话显然前缀和(我就琢磨了半天)
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
#define LL long long
int n;
int prime[],tot;
bool vis[];
LL phi[],ans;
void get_phi()
{
phi[]=;
for(int i=;i<=n;i++)
{
if(!vis[i])prime[++tot]=i,phi[i]=i-;
for(int j=;j<=tot&&prime[j]*i<=n;j++)
{
vis[prime[j]*i]=;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*phi[prime[j]];
}
}
for(int i=;i<=n;i++)phi[i]=phi[i-]+phi[i];
}
int main()
{
scanf("%d",&n);
get_phi();
for(int i=;i<=tot;i++)ans+=phi[n/prime[i]];
printf("%lld",ans*+tot);
//乘2的原因就不多说了(x,y)和(y,x)啊。
之所以再加一个tot是因为我的phi数组定义的phi[1]=0.
}
洛谷 P2568 GCD的更多相关文章
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- 洛谷P2568 GCD(线性筛法)
题目链接:传送门 题目: 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 ...
- 洛谷 - P2568 - GCD - 欧拉函数
https://www.luogu.org/problemnew/show/P2568 统计n以内gcd为质数的数的个数. 求 \(\sum\limits_p \sum\limits_{i=1}^{n ...
- [洛谷P2568]GCD
题目大意:给你$n(1\leqslant n\leqslant 10^7)$,求$\displaystyle\sum\limits_{x=1}^n\displaystyle\sum\limits_{y ...
- 洛谷 P2568 GCD(莫比乌斯反演)
题意:$\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)\epsilon prime]$. 对于这类题一般就是枚举gcd,可得: =$\sum_{d\epsilon prim ...
- 洛谷 P2568 GCD 题解
原题链接 庆祝一下:数论紫题达成成就! 第一道数论紫题.写个题解庆祝一下吧. 简要题意:求 \[\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] \] 其中 \(p\) ...
- 洛谷P2568 GCD(莫比乌斯反演)
传送门 这题和p2257一样……不过是n和m相同而已…… 所以虽然正解是欧拉函数然而直接改改就行了所以懒得再码一遍了2333 不过这题卡空间,记得mu开short,vis开bool //minamot ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷 P1890 gcd区间
P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...
随机推荐
- SpringMVC重定向传递参数
在SpringMVC的一个controller中要把参数传到页面,只要配置视图解析器,把参数添加到Model中,在页面用el表达式就可以取到.但是,这样使用的是forward方式,浏览器的地址栏是不变 ...
- 管理docker容器
如果在容器中启动sshd,存在开销和攻击面增大的问题.同时也违反了Docker所倡导的一个容器一个进程的原则. docker attach 37d61466c69e \\注意:如果在stdin中exi ...
- LDAP理论知识
整理改编自: https://www.cnblogs.com/yjd_hycf_space/p/7994597.html http://blog.51cto.com/407711169/1439623 ...
- 洛谷 P3381 【模板】最小费用最大流
题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数\(N.M.S.T\) ...
- 【考试记录】2018 山东省队集训第一轮D4(雾)
T1题意: 给你一个$n\times m$的矩阵$B$,求它能由最少多少个形如两个向量之积$(n\times 1)\times(1\times m)$的矩阵相加得到. 题解: 考虑上界,最多需要$mi ...
- GYM 101933K(二项式反演、排列组合)
方法一 设\(f_i\)为最多使用\(i\)种颜色的涂色方案,\(g_i\)为恰好只使用\(i\)种颜色的涂色方案.可知此题答案为\(g_k\). 根据排列组合的知识不难得到\(f_k = \sum_ ...
- Linux 运维培训笔记
2018/01/05 权限管理:sudoers文件 KAIFA_ADMINS ALL=(OP1) KAIFACMD 用户(大写) ...
- Dell服务器安装系统中遇到的坑
在本学期开学初期,由于后续实验的需要,老师为我们配置了服务器,该服务器的型号为Dell Power R730. 由于我也是一个小白,在服务器安装系统的过程中,遇到了一些麻烦,在这里记录下来,希望自己能 ...
- 《javascript设计模式》笔记之第十章 和 第十一章:门面模式和适配器模式
第十章:门面模式 一:门面模式的作用 简化已有的api,使其更加容易使用 解决浏览器的兼容问题 二:门面模式的本质 门面模式的本质就是包装已有的api来简化操作 三:门面模式的两个简单例子 下面这 ...
- 下一代的前端构建工具:parcel打包react
1. parcel很受欢迎,webpack太慢了,试试Parcel下一代的前端构建工具 2.Parcel很快,但缺少好多插件,没有base64,没有办法拆分打包文件.... 3.总结:适合小项目 4. ...